1887

Abstract

A gene cluster that encodes an ABC-type, high-affinity molybdate transporter from has been isolated and characterized. and mutant strains were unable to grow aerobically or anaerobically with nitrate as nitrogen source or as respiratory substrate, respectively, and lacked nitrate reductase activity. The nitrogen-fixing ability of the mutants in symbiotic association with soybean plants grown in a Mo-deficient mineral solution was severely impaired. Addition of molybdate to the bacterial growth medium or to the plant mineral solution fully restored the wild-type phenotype. Because the amount of molybdate required for suppression of the mutant phenotype either under free-living or under symbiotic conditions was dependent on sulphate concentration, it is likely that a sulphate transporter is also involved in Mo uptake in . The promoter region of the genes has been characterized by primer extension. Reverse transcription and expression of a transcriptional fusion, P, was detected only in a mutant grown in a medium without molybdate supplementation. These findings indicate that transcription of the genes is repressed by molybdate.

Keyword(s): PDW, plant dry weight
Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.28347-0
2006-01-01
2019-10-17
Loading full text...

Full text loading...

/deliver/fulltext/micro/152/1/199.html?itemId=/content/journal/micro/10.1099/mic.0.28347-0&mimeType=html&fmt=ahah

References

  1. Anderson, L., Palmer, T., Price, N., Bornemann, S., Boxer, D. & Pau, R. ( 1997; ). Characterisation of the molybdenum-responsive ModE regulatory protein and its binding to the promoter region of the modABCD (molybdenum transport) operon of Escherichia coli. Eur J Biochem 246, 119–126.[CrossRef]
    [Google Scholar]
  2. Bedmar, E. J., Robles, E. F. & Delgado, M. J. ( 2005; ). The complete dentrification pathway of symbiotic N-fixing bacteria Bradyrhizobium japonicum. Biochem Soc Trans 1, 11–16.
    [Google Scholar]
  3. Bergersen, F. J. ( 1977; ). A treatise on dinitrogen fixation. In Biology, section III, pp. 519–556. Edited by R. W. Hardy & W. Silver. New York: Wiley.
  4. Delgado, M. J., Olivares, J. & Bedmar, E. J. ( 1989; ). Nitrate reductase activity of free-living and symbiotic uptake hydrogenase-positive and uptake hydrogenase-negative strains of Bradyrhizobium japonicum. Arch Microbiol 151, 166–170.[CrossRef]
    [Google Scholar]
  5. Delgado, M. J., Garrido, J. M., Ligero, F. & Lluch, C. ( 1993; ). Nitrogen fixation and carbon metabolism by nodules and bacteroids of pea plants under sodium chloride stress. Physiol Plant 89, 824–829.[CrossRef]
    [Google Scholar]
  6. Delgado, M. J., Bonnard, N., Tresierra-Ayala, A., Bedmar, E. J. & Müller, P. ( 2003; ). The Bradyrhizobium japonicum napEDABC genes encoding the periplasmic nitrate reductase are essential for nitrate respiration. Microbiology 149, 3395–3403.[CrossRef]
    [Google Scholar]
  7. Galibert, F., Finan, T. M., Long, S. R. & 53 other authors ( 2001; ). The composite genome of the legume symbiont Sinorhizobium meliloti. Science 293, 668–672.[CrossRef]
    [Google Scholar]
  8. Göttfert, M., Röthlisberger, S., Kundig, C., Beck, C., Marty, R. & Hennecke, H. ( 2001; ). Potential symbiotic-specific genes uncovered by sequencing a 410-kilobase DNA region of the Bradyrhizobium japonicum chromosome. J Bacteriol 183, 1405–1412.[CrossRef]
    [Google Scholar]
  9. Graham, L. & Maier, R. J. ( 1987; ). Variability in molybdenum uptake activity in Bradyrhizobium japonicum strains. J Bacteriol 169, 2555–2560.
    [Google Scholar]
  10. Grunden, A. M. & Shanmugam, K. T. ( 1997; ). Molybdate transport and regulation in bacteria. Arch Microbiol 168, 345–354.[CrossRef]
    [Google Scholar]
  11. Grunden, A. M., Ray, R. M., Rosentel, J. K., Healy, F. G. & Shanmugam, K. T. ( 1996; ). Repression of the Escherichia coli modABCD (molybdate transport) operon by ModE. J Bacteriol 178, 735–744.
    [Google Scholar]
  12. Grunden, A. M., Self, W. T., Villain, M., Blalock, J. E. & Shanmugam, K. T. ( 1999; ). An analysis of the binding of repressor protein ModE to modABCD (molybdate transport) operator/promotor DNA of Escherichia coli. J Biol Chem 274, 24308–24315.[CrossRef]
    [Google Scholar]
  13. Imperial, J., Ugalde, R. A., Shah, V. K. & Brill, W. J. ( 1985; ). Mol mutants of Klebsiella pneumoniae requiring high levels of molybdate for nitrogenase activity. J Bacteriol 163, 1285–1287.
    [Google Scholar]
  14. Johnston, A. W. B., Yeoman, K. H. & Wexler, M. ( 2001; ). Metals and the rhizobial-legume symbiosis-uptake, utilization and signalling. Adv Microb Physiol 45, 112–156.
    [Google Scholar]
  15. Kaneko, T., Nakamura, Y., Sato, S. & 21 other authors ( 2000; ). Complete genome structure of the nitrogen-fixing symbiotic bacterium Mesorhizobium loti. DNA Res 7, 331–338.[CrossRef]
    [Google Scholar]
  16. Kaneko, T., Nakamura, Y., Sato, S. & 17 other authors ( 2002; ). Complete genomic sequence of nitrogen-fixing symbiotic bacterium Bradyrhizobium japonicum USDA110. DNA Res 9, 189–197.[CrossRef]
    [Google Scholar]
  17. Kertesz, M. A. ( 2001; ). Bacterial transporters for sulfate and organosulfur compounds. Res Microbiol 152, 279–290.[CrossRef]
    [Google Scholar]
  18. Kovach, M. E., Phillips, R. W., Elzer, P. H., Roop, R. M., II & Peterson, K. M. ( 1994; ). pBBR1MCS: a broad-host-range cloning vector. Biotechniques 16, 800–802.
    [Google Scholar]
  19. Kredich, N. M. ( 1987; ). Biosynthesis of cysteine. In Escherichia coli and Salmonella typhimurium: Cellular and Molecular Biology, pp. 419–428. Edited by F. C. Neidhardt, J. L. Ingraham, K. B. Low, B. Magasanik, M. Schaechter & H. E. Umbarger. Washington, DC: American Society for Microbiology.
  20. Lawson, D. M. & Smith, B. E. ( 2002; ). Molybdenum nitrogenases: a crystallographic and mechanistic view. Met Ions Biol Syst 39, 75–119.
    [Google Scholar]
  21. Lee, J. H., Wendt, J. C. & Shanmugam, K. T. ( 1990; ). Identification of a new gene, molR, essential for utilization of molybdate by Escherichia coli. J Bacteriol 172, 2079–2087.
    [Google Scholar]
  22. Luque, F., Mitchenall, L. A., Chapman, M., Christine, R. & Pau, R. N. ( 1993; ). Characterization of genes involved in molybdenum transport in Azotobacter vinelandii. Mol Microbiol 7, 447–459.[CrossRef]
    [Google Scholar]
  23. Maier, R. J. & Graham, L. ( 1988; ). Molybdate transport by Bradyrhizobium japonicum bacteroids. J Bacteriol 170, 5613–5619.
    [Google Scholar]
  24. Maupin-Furlow, J. A., Rosentel, J. K., Lee, J. H., Deppenmeier, U., Gunsalus, R. P. & Shanmugam, K. T. ( 1995; ). Genetic analysis of the modABCD (molybdate transport) operon of Escherichia coli. J Bacteriol 177, 4851–4856.
    [Google Scholar]
  25. McNicholas, P. M., Chiang, R. C. & Gunsalus, R. P. ( 1998; ). Anaerobic regulation of the Escherichia coli dmsABC operon requires the molybdate responsive regulator, ModE. Mol Microbiol 27, 197–208.[CrossRef]
    [Google Scholar]
  26. Mesa, M., Alché, J. D., Bedmar, E. J. & Delgado, M. J. ( 2004; ). Expression of nir, nor and nos dentrification genes from Bradyrhizobium japonicum in soybean root nodules. Physiol Plant 119, 1–7.
    [Google Scholar]
  27. Miller, J. H. ( 1972; ). Experiments in Molecular Genetics. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  28. Mouncey, N. J., Mitchenall, L. A. & Pau, R. N. ( 1995; ). Mutational analysis of genes of the mod locus involved in molybdenum transport, homeostasis, and processing in Azotobacter vinelandii. J Bacteriol 177, 5294–5302.
    [Google Scholar]
  29. Mouncey, N. J., Mitchenall, L. A. & Pau, R. N. ( 1996; ). The modE gene product mediates molybdenum-dependent expression of genes for the high-affinity molybdate transporter and modG in Azotobacter vinelandii. Microbiology 142, 1997–2004.[CrossRef]
    [Google Scholar]
  30. Neubauer, H., Pantel, I., Lindgren, P. & Götz, F. ( 1999; ). Characterization of the molybdate transport system ModABC of Staphylococcus carnosus. Arch Microbiol 172, 109–115.[CrossRef]
    [Google Scholar]
  31. Nicholas, D. J. D. & Nason, A. ( 1957; ). Determination of nitrate and nitrite. In Methods in Enzymology, vol. 3. pp. 981–984. Edited by S. P Colowick & N. O. Kaplan. New York: Academic Press.
  32. Nienaber, A., Huber, A., Göttfert, M., Hennecke, H. & Fischer, H. M. ( 2000; ). Three new NifA-regulated genes in the Bradyrhizobium japonicum symbiotic gene region discovered by competitive DNA–RNA hybridization. J Bacteriol 182, 1472–1480.[CrossRef]
    [Google Scholar]
  33. Ohta, N., Galsworthy, P. R. & Pardee, A. B. ( 1971; ). Genetics of sulfate transport by Salmonella typhimurium. J Bacteriol 105, 1053–1062.
    [Google Scholar]
  34. Pau, R. N. & Lawson, D. M. ( 2002; ). Transport, homeostasis, regulation, and binding of molybdate and tungstate to proteins. Met Ions Biol Syst 39, 31–74.
    [Google Scholar]
  35. Prentki, P. & Kirsch, H. M. ( 1984; ). In vitro insertional mutagenesis with a selectable DNA fragment. Gene 29, 303–312.[CrossRef]
    [Google Scholar]
  36. Rech, S., Deppenmeier, U. & Gunsalus, R. P. ( 1995; ). Regulation of the molybdate transport operon, modABCD, of Escherichia coli in response to molybdate availability. J Bacteriol 177, 1023–1029.
    [Google Scholar]
  37. Richardson, D. J., Berks, B. C., Russell, D. A., Spiro, S. & Taylor, C. J. ( 2001; ). Functional, biochemical and genetic diversity of prokaryotic nitrate reductases. Cell Mol Life Sci 58, 165–178.[CrossRef]
    [Google Scholar]
  38. Rigaud, J. & Puppo, A. ( 1975; ). Indole-3-acetic acid catabolism by soybean bacteroids. J Gen Microbiol 88, 223–228.[CrossRef]
    [Google Scholar]
  39. Rosentel, J. K., Healy, F., Maupin-Furlow, J. A., Lee, J. H. & Shanmugam, K. T. ( 1995; ). Molybdate and regulation of mod (molybdate transport), fdhF, and hyc (formate hydrogenlyase) operons in Escherichia coli. J Bacteriol 177, 4857–4864.
    [Google Scholar]
  40. Sambrook, J., Fritsch, E. F. & Maniatis, T. ( 1989; ). Molecular Cloning: a Laboratory Manual. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  41. Schäfer, A., Tauch, A., Jäger, W., Kalinowski, J., Thierbach, G. & Pühler, A. ( 1994; ). Small mobilizable multi-purpose cloning vectors derived from the Escherichia coli plasmids pK18 and pK19: selection of defined deletions in the chromosome of Corynebacterium glutamicum. Gene 145, 69–73.[CrossRef]
    [Google Scholar]
  42. Self, W. T., Grunden, A. M., Hasona, A. & Shanmugam, K. T. ( 2001; ). Molybdate transport. Res Microbiol 152, 311–321.[CrossRef]
    [Google Scholar]
  43. Simon, R., Priefer, U. & Pühler, A. ( 1983; ). A broad host range mobilization system for in vivo genetic engineering: transposon mutagenesis in Gram negative bacteria. Biotechnology 1, 784–791.[CrossRef]
    [Google Scholar]
  44. Sirko, A., Hryniewicz, M., Hulanicka, D. & Böck, A. ( 1990; ). Sulfate and thiosulfate transport in Escherichia coli K-12: nucleotide sequence and expression of the cysTWAM gene cluster. J Bacteriol 172, 3351–3357.
    [Google Scholar]
  45. Spaink, H. P., Okker, J. H., Wijffelman, C. A., Pees, E. & Lugtenberg, B. J. J. ( 1987; ). Promoters in the nodulation region of Rhizobium leguminosarum Sym plasmid pRL1JI. Plant Mol Biol 9, 27–39.[CrossRef]
    [Google Scholar]
  46. Stewart, V. ( 1988; ). Nitrate respiration in relation to facultative metabolism in enteric bacteria. Microbiol Rev 52, 190–232.
    [Google Scholar]
  47. Thiel, T., Pratte, B. & Zabalak, M. ( 2002; ). Transport of molybdate in the cyanobacterium Anabaena variabilis ATCC 29413. Arch Microbiol 179, 50–56.[CrossRef]
    [Google Scholar]
  48. Vincent, J. M. ( 1974; ). Root-nodule symbioses with Rhizobium. In The Biology of Nitrogen Fixation, pp. 265–341. Edited by A. Quispel. New York: American Elsevier Publishing Company.
  49. Wang, G., Angermuller, S. & Klipp, W. ( 1993; ). Characterization of Rhodobacter capsulatus genes encoding a molybdenum transport system and putative molybdenum-pterin-binding proteins. J Bacteriol 175, 3031–3042.
    [Google Scholar]
  50. Wood, D. W., Setubal, J. C., Kaul, R. & 48 other authors ( 2001; ). The genome of the natural genetic engineer Agrobacterium tumefaciens C58. Science 294, 2317–2323.[CrossRef]
    [Google Scholar]
  51. Zahalak, M., Pratte, B., Werth, K. J. & Thiel, T. ( 2004; ). Molybdate transport and its effect on nitrogen utilization in the cyanobacterium Anabaena variabilis ATCC 29419. Mol Microbiol 51, 539–549.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.28347-0
Loading
/content/journal/micro/10.1099/mic.0.28347-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error