1887

Abstract

The discovery of new antibiotics and other bioactive microbial metabolites continues to be an important objective in new drug research. Since extensive screening has led to the discovery of thousands of bioactive microbial molecules, new approaches must be taken in order to reduce the probability of rediscovering known compounds. The authors have recently isolated slow-growing acidophiles belonging to the novel genera and within the order . These strains, which likely belong to a new suborder, grow as filamentous mycelia, have a genome size around 8 Mb, and produce antimicrobial activities. In addition, a single strain harbours simultaneously genes encoding type I and type II polyeketide synthases, as well as non-ribosomal peptide synthetases. The metabolite produced by one strain was identified as a previously reported dimeric isochromanequinone. In addition, at least the strains appear globally distributed, since a PCR-specific signal could be detected in a significant fraction of acidic soils from different continents, and similar strains have been independently isolated from an Australian soil ( Jospeh , , 7210–7215, 2003 ). Thus, these previously uncultured actinomycetes share several features with and related antibiotic-producing genera, and represent a promising source of novel antibiotics.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.28335-0
2006-03-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/152/3/675.html?itemId=/content/journal/micro/10.1099/mic.0.28335-0&mimeType=html&fmt=ahah

References

  1. Atlas R. M, Park L. C. 1993 Handbook of Microbiological Media Boca Raton: CRC Press;
    [Google Scholar]
  2. Bentley S. D, Chater K. F, Cerdeno-Tarraga A. M. 40 other authors 2002; Complete genome sequence of the model actinomycete Streptomyces coelicolor A3(2). Nature 417:141–147 [CrossRef]
    [Google Scholar]
  3. Beyazova M, Brodsky B, Shearer M, Horan A. C. 1995; Preparation of actinomycete DNA for pulse field gel electrophoresis. Int J Syst Bacteriol 45:852–854 [CrossRef]
    [Google Scholar]
  4. Bull A. T, Ward A. C, Goodfellow M. 2000; Search and discovery strategies for biotechnology: the paradigm shift. Microbiol Mol Biol Rev 64:573–606 [CrossRef]
    [Google Scholar]
  5. Busti E, Cavaletti L, Monciardini P, Schumann P, Rohde M, Sosio M, Donadio S. 2006; Catenulispora acidiphila gen. nov., sp.nov., a novel mycelium-forming actinomycete and proposal of Catenulisporaceae fam. nov. Int J Syst Bacteriol (in press)
    [Google Scholar]
  6. Cavaletti L, Monciardini P, Schumann P, Rohde M, Bamonte R, Busti E, Sosio M, Donadio S. 2006; Actinospica acidiphila gen. nov., sp. nov., and Actinospica robiniae gen. nov.,sp.nov.; proposal for Actinospicaceae fam. nov. and Catenulisporinae subordo nov. in the order Actinomycetales . Int J Syst Bacteriol (in press)
    [Google Scholar]
  7. Challis G. L, Ravel J, Townsend C. A. 2000; Predictive, structure-based model of amino acid recognition by nonribosomal peptide synthetase adenylation domains. Chem Biol 7:211–224 [CrossRef]
    [Google Scholar]
  8. Cole S. T, Brosch R, Parkhill J. 39 other authors 1998; Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature 393:537–544 [CrossRef]
    [Google Scholar]
  9. Correia A, Martin J. F, Castro J. M. 1994; Pulse-field gel electrophoresis of the genome of amino acid producing corynebacteria: chromosome sizes and diversity of restriction pattern. Microbiology 140:2841–2847 [CrossRef]
    [Google Scholar]
  10. Courtois S, Cappellano C. M, Ball M. 13 other authors 2003; Recombinant environmental libraries provide access to microbial diversity for drug discovery from natural products. Appl Environ Microbiol 69:49–55 [CrossRef]
    [Google Scholar]
  11. Donadio S, Busti E, Monciardini P, Bamonte R, Mazza P, Sosio M, Cavaletti L, Müller-Tiemann B. 2005; Sources of polyketides and nonribosomal peptides. In Biocombinatorial Approaches for Drug Finding pp  19–41 Edited by Wohlleben W., Spelling T. Berlin: Ernst Schering Research Foundation, Springer;
    [Google Scholar]
  12. Felsenstein J. 1993 phylip – Phylogeny Inference Package, version 3.5.1. Distributed by the author University of Washington; Seattle, USA:
    [Google Scholar]
  13. Fisher M. M, Triplett E. W. 1999; Automated approach for ribosomal intergenic spacer analysis of microbial diversity and its application to freshwater bacterial communities. Appl Environ Microbiol 65:4630–4636
    [Google Scholar]
  14. Gerth K, Pradella S, Perlova O, Beyer S, Muller R. 2003; Myxobacteria: proficient producers of novel natural products with various biological activities – past and future biotechnological aspects with the focus on the genus Sorangium . J Biotechnol 106:233–253 [CrossRef]
    [Google Scholar]
  15. Hopwood D. A. 1997; Genetic contributions to understanding polyketide synthases. Chem Rev 97:2465–2498 [CrossRef]
    [Google Scholar]
  16. Ikeda H, Ishikawa J, Hanamoto A, Shinose M, Kikuchi H, Shiba T, Sakaki Y, Hattori M, Omura S. 2003; Complete genome sequence and comparative analysis of the industrial microorganism Streptomyces avermitilis . Nat Biotechnol 21:526–531 [CrossRef]
    [Google Scholar]
  17. Joseph S. J, Hugenholtz P, Sangwan P, Osborne C. A, Janssen P. H. 2003; Laboratory cultivation of widespread and previously uncultured soil bacteria. Appl Environ Microbiol 69:7210–7215 [CrossRef]
    [Google Scholar]
  18. Kieser H. M, Kieser T, Hopwood D. A. 1992; A combined genetic and physical map of the Streptomyces coelicolor A3(2) chromosome. J Bacteriol 174:5496–5507
    [Google Scholar]
  19. Lancini G, Parenti F, Gallo G. 1995 Antibiotics: a Multidisciplinary Approach New York: Plenum;
    [Google Scholar]
  20. Lazzarini A, Cavaletti L, Toppo G, Marinelli F. 2000; Rare genera of actinomycetes as potential producers of new antibiotics. Antonie van Leeuwenhoek 78:399–405 [CrossRef]
    [Google Scholar]
  21. Magarvey N. A, Keller J. M, Bernan V, Dworkin M, Sherman D. H. 2004; Isolation and characterization of novel marine-derived actinomycete taxa rich in bioactive metabolites. Appl Environ Microbiol 70:7520–7529 [CrossRef]
    [Google Scholar]
  22. Marahiel M. 1997; Protein templates for the biosynthesis of peptide antibiotics. Chem Biol 4:561–567 [CrossRef]
    [Google Scholar]
  23. Mazza P, Monciardini P, Cavaletti L, Sosio M, Donadio S. 2003; Diversity of Actinoplanes and related genera isolated from an Italian soil. Microb Ecol 45:362–372 [CrossRef]
    [Google Scholar]
  24. Metsä-Ketelä M, Salo V, Halo L, Hautala A, Hakala J, Mäntsälä P, Ylihonko K. 1999; An efficient approach for screening minimal PKS genes from Streptomyces . FEMS Microbiol Lett 180:1–6 [CrossRef]
    [Google Scholar]
  25. Metsä-Ketelä M, Halo L, Munukka E, Hakala J, Mäntsälä P, Ylihonko K. 2002; Molecular evolution of aromatic polyketides and comparative sequence analysis of polyketide ketosynthase and 16S ribosomal RNA genes from various Streptomyces species. Appl Environ Microbiol 68:4472–4479 [CrossRef]
    [Google Scholar]
  26. Mincer T. J, Jensen P. R, Kauffman C. A, Fenical W. 2002; Widespread and persistent populations of a major new marine actinomycete taxon in ocean sediments. Appl Environ Microbiol 68:5005–5011 [CrossRef]
    [Google Scholar]
  27. Monciardini P, Sosio M, Cavaletti L, Chiocchini C, Donadio S. 2002; New PCR primers for the selective amplification of 16S rDNA from different groups of actinomycetes. FEMS Microbiol Ecol 42:419–429
    [Google Scholar]
  28. Omura S, Ikeda H, Ishikawa J. 11 other authors 2001; Genome sequence of an industrial microorganism Streptomyces avermitilis : deducing the ability of producing secondary metabolites. Proc Natl Acad Sci U S A 98:12215–12220 [CrossRef]
    [Google Scholar]
  29. Parenti F, Coronelli C. 1979; Members of the genus Actinoplanes and their antibiotics. Annu Rev Microbiol 33:389–411 [CrossRef]
    [Google Scholar]
  30. Pearson W. R. 1990; Rapid and sensitive sequence comparison with FASTP and FASTA. Methods Enzymol 183:63–98
    [Google Scholar]
  31. Redenbach M, Sheel J, Schmidt U. 2000; Chromosome topology and genome size of selected actinomycetes species. Antonie van Leeuwenhoek 78:227–235 [CrossRef]
    [Google Scholar]
  32. Sait M, Hugenholtz P, Janssen P. H. 2002; Cultivation of globally distributed soil bacteria from phylogenetic lineages previously only detected in cultivation-independent surveys. Environ Microbiol 4:654–666 [CrossRef]
    [Google Scholar]
  33. Sambrook J, Russell D. W. 2001 Molecular Cloning: a Laboratory Manual, 3rd edn.. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  34. Sosio M, Bossi E, Bianchi A, Donadio S. 2000; Multiple peptide synthetase gene clusters in actinomycetes. Mol Gen Genet 264:213–221 [CrossRef]
    [Google Scholar]
  35. Stachelhaus T, Mootz H. D, Marahiel M. A. 1999; The specificity-conferring code of adenylation domains in nonribosomal peptide synthetases. Chem Biol 6:493–505 [CrossRef]
    [Google Scholar]
  36. Suzuki S. I, Okuda T, Komatsubara S. 2001; Selective isolation and distribution of the genus Planomonospora in soils. Can J Microbiol 47:253–263 [CrossRef]
    [Google Scholar]
  37. Wagman G. H, Weinstein M. J. 1980; Antibiotics from Micromonospora . Annu Rev Microbiol 34:537–557 [CrossRef]
    [Google Scholar]
  38. Watve M. G, Tickoo R, Jog M. M, Bhole B. D. 2001; How many antibiotics are produced by the genus Streptomyces ?. Arch Microbiol 176:386–390 [CrossRef]
    [Google Scholar]
  39. Yeo W. H, Yun B. S, Kim Y. S, Yu S. H, Kim H. M, Yoo I. D, Ki Y. H. 2002; GTRI-BB, a new cytotoxic isochromanquinone produced by Micromonospora sp. SA-246. J Antibiot 55:511–515 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.28335-0
Loading
/content/journal/micro/10.1099/mic.0.28335-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error