1887

Abstract

Tripartite ATP-independent periplasmic (TRAP) transporters are relatively common prokaryotic secondary transporters which comprise an extracytoplasmic solute receptor (ESR) protein and two dissimilar membrane proteins or domains, yet the substrates and physiological functions of only a few of these systems are so far known. In this study, a biophysical approach was used to identify the ligands for the purified RRC01191 and YiaO proteins, which are members of two phylogenetically distinct families of TRAP-ESRs found in diverse bacteria. In contrast to previous indirect evidence pointing to RRC01191 orthologues being involved in polyol uptake, it was shown that RRC01191 binds pyruvate, 2-oxobutyrate and a broad range of aliphatic monocarboxylic 2-oxoacid anions with varying affinities ( values 0·08–3 μM), consistent with a predicted role in monocarboxylate transport related to branched-chain amino-acid biosynthesis. The YiaMNO TRAP transporter has previously been proposed to be an -xylulose uptake system [ Plantinga . (2004) , 51–57], but purified YiaO did not bind - or -xylulose as judged by fluorescence spectroscopy, circular dichroism or mass spectrometry. Instead, these techniques showed that a breakdown product of -ascorbate, 2,3-diketo--gulonate (2,3-DKG), binds by a simple one-step mechanism with sub-micromolar affinity. The data provide the first evidence for the existence of ESR-dependent transporters for 2-oxoacids and 2,3-DKG, homologues of which appear to be widespread amongst prokaryotes. The results also underline the utility of direct ESR ligand-binding studies for TRAP transporter characterization

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.28334-0
2006-01-01
2019-09-15
Loading full text...

Full text loading...

/deliver/fulltext/micro/152/1/187.html?itemId=/content/journal/micro/10.1099/mic.0.28334-0&mimeType=html&fmt=ahah

References

  1. Allen, S., Zaleski, A., Johnson, J. W., Gibson, B. W. & Apicella, M. A. ( 2005; ). Novel sialic acid transporter of Haemophilus influenzae. Infect Immun 73, 5291–5300.[CrossRef]
    [Google Scholar]
  2. Badarinarayana, V., Estep, P. W., III, Shendure, J., Edwards, J., Tavazoie, S., Lam, F. & Church, G. M. ( 2001; ). Selection analyses of insertional mutants using subgenic-resolution arrays. Nat Biotechnol 19, 1060–1065.[CrossRef]
    [Google Scholar]
  3. Badia, J., Ibanez, E., Sabate, M., Baldoma, L. & Aguilar, J. ( 1998; ). A rare 920-kilobase chromosomal inversion mediated by IS1 transposition causes constitutive expression of the yiaK-S operon for carbohydrate utilization in Escherichia coli. J Biol Chem 273, 8376–8381.[CrossRef]
    [Google Scholar]
  4. Bendtsen, J. D., Nielsen, H., von Heijne, G. & Brunak, S. ( 2004; ). Improved prediction of signal peptides: SignalP 3.0. J Mol Biol 340, 783–795.[CrossRef]
    [Google Scholar]
  5. Berriman, M. & Rutherford, K. ( 2003; ). Viewing and annotating sequence data with Artemis. Brief Bioinform 4, 124–132.[CrossRef]
    [Google Scholar]
  6. Bode, A. M., Cunningham, L. & Rose, R. C. ( 1990; ). Spontaneous decay of oxidized ascorbic acid (dehydro-l-ascorbic acid) evaluated by high-pressure liquid chromatography. Clin Chem 36, 1807–1809.
    [Google Scholar]
  7. Bruggemann, C., Denger, K., Cook, A. M. & Ruff, J. ( 2004; ). Enzymes and genes of taurine and isethionate dissimilation in Paracoccus denitrificans. Microbiology 150, 805–816.[CrossRef]
    [Google Scholar]
  8. Chae, J. C., Kim, Y., Kim, Y. C., Zylstra, G. J. & Kim, C. K. ( 2000; ). Genetic structure and functional implication of the fcb gene cluster for hydrolytic dechlorination of 4-chlorobenzoate from Pseudomonas sp. DJ-12. Gene 258, 109–116.[CrossRef]
    [Google Scholar]
  9. Choudhary, M., MacKenzie, C., Mouncey, N. J. & Kaplan, S. ( 1999; ). RsGDB, the Rhodobacter sphaeroides Genome Database. Nucleic Acids Res 27, 61–62.[CrossRef]
    [Google Scholar]
  10. Cioffi, N., Losito, I., Terzano, R. & Zambonin, C. G. ( 2000; ). An electrospray ionization ion trap mass spectrometric (ESI-MS-MSn) study of dehydroascorbic acid hydrolysis at neutral pH. Analyst 125, 2244–2248.[CrossRef]
    [Google Scholar]
  11. Contzen, M., Burger, S. & Stolz, A. ( 2001; ). Cloning of the genes for a 4-sulphocatechol-oxidizing protocatechuate 3,4-dioxygenase from Hydrogenophaga intermedia S1 and identification of the amino acid residues responsible for the ability to convert 4-sulphocatechol. Mol Microbiol 41, 199–205.[CrossRef]
    [Google Scholar]
  12. Dailey, F. E. & Cronan, J. E., Jr ( 1986; ). Acetohydroxy acid synthase I, a required enzyme for isoleucine and valine biosynthesis in Escherichia coli K-12 during growth on acetate as the sole carbon source. J Bacteriol 165, 453–460.
    [Google Scholar]
  13. Deutsch, J. C. ( 1997; ). Gas chromatographic/mass spectrometric measurement of ascorbic acid and analysis of ascorbic acid degradation in solution. Methods Enzymol 279, 13–24.
    [Google Scholar]
  14. Deutsch, J. C. ( 1998a; ). Spontaneous hydrolysis and dehydration of dehydroascorbic acid in aqueous solution. Anal Biochem 260, 223–229.[CrossRef]
    [Google Scholar]
  15. Deutsch, J. C. ( 1998b; ). Oxygen-accepting antioxidants which arise during ascorbate oxidation. Anal Biochem 265, 238–245.[CrossRef]
    [Google Scholar]
  16. Deutsch, J. C. ( 2000; ). Dehydroascorbic acid. J Chromatogr A 881, 299–307.[CrossRef]
    [Google Scholar]
  17. Felsenstein, J. ( 1989; ). phylip – Phylogeny Inference Package, version 3.2. Cladistics 5, 164–166.
    [Google Scholar]
  18. Forward, J. A., Behrendt, M. C., Wyborn, N. R., Cross, R. & Kelly, D. J. ( 1997; ). TRAP transporters: a new family of periplasmic solute transport systems encoded by the dctPQM genes of Rhodobacter capsulatus and by homologs in diverse gram-negative bacteria. J Bacteriol 179, 5482–5493.
    [Google Scholar]
  19. Grammann, K., Volke, A. & Kunte, H. J. ( 2002; ). New type of osmoregulated solute transporter identified in halophilic members of the bacteria domain: TRAP transporter TeaABC mediates uptake of ectoine and hydroxyectoine in Halomonas elongata DSM 2581T. J Bacteriol 184, 3078–3085.[CrossRef]
    [Google Scholar]
  20. Higgins, C. F. ( 2001; ). ABC transporters: physiology, structure and mechanism – an overview. Res Microbiol 152, 205–210.[CrossRef]
    [Google Scholar]
  21. Hillmer, P. & Gest, H. ( 1977; ). H2 metabolism in the photosynthetic bacterium Rhodopseudomonas capsulata: H2 production by growing cultures. J Bacteriol 129, 724–731.
    [Google Scholar]
  22. Horlacher, R., Xavier, K. B., Santos, H., Diruggiero, J., Kossman, M. & Boos, W. ( 1998; ). Archaeal binding protein-dependent ABC transporter: molecular and biochemical analysis of the trehalose/maltose transport system of the hyperthermophilic archaeon Thermococcus litoralis. J Bacteriol 180, 680–689.
    [Google Scholar]
  23. Hosie, A. H., Allaway, D. & Poole, P. S. ( 2002; ). A monocarboxylate permease of Rhizobium leguminosarum is the first member of a new subfamily of transporters. J Bacteriol 184, 5436–5448.[CrossRef]
    [Google Scholar]
  24. Ibanez, E., Campos, E., Baldoma, L., Aguilar, J. & Badia, J. ( 2000; ). Regulation of expression of the yiaKLMNOPQRS operon for carbohydrate utilization in Escherichia coli: involvement of the main transcriptional factors. J Bacteriol 182, 4617–4624.[CrossRef]
    [Google Scholar]
  25. Jacobs, M. H., van der Heide, T., Driessen, A. J. & Konings, W. N. ( 1996; ). Glutamate transport in Rhodobacter sphaeroides is mediated by a novel binding protein-dependent secondary transport system. Proc Natl Acad Sci U S A 93, 12786–12790.[CrossRef]
    [Google Scholar]
  26. James, L. C., Roversi, P. & Tawfik, D. S. ( 2003; ). Antibody multispecificity mediated by conformational diversity. Science 299, 1362–1367.[CrossRef]
    [Google Scholar]
  27. Kapatral, V., Anderson, I., Ivanova, N. & 22 other authors ( 2002; ). Genome sequence and analysis of the oral bacterium Fusobacterium nucleatum strain ATCC 25586. J Bacteriol 184, 2005–2018.[CrossRef]
    [Google Scholar]
  28. Kelly, D. J. & Thomas, G. H. ( 2001; ). The tripartite ATP-independent periplasmic (TRAP) transporters of bacteria and archaea. FEMS Microbiol Rev 25, 405–424.[CrossRef]
    [Google Scholar]
  29. Kolker, E., Makarova, K. S., Shabalina, S. & 9 other authors ( 2004; ). Identification and functional analysis of ‘hypothetical’ genes expressed in Haemophilus influenzae. Nucleic Acids Res 32, 2353–2361.[CrossRef]
    [Google Scholar]
  30. Marmur, J. ( 1961; ). A procedure for the isolation of deoxyribonucleic acid from microorganisms. J Mol Biol 3, 208–218.[CrossRef]
    [Google Scholar]
  31. Miller, D. M., Olson, J. S. & Quiocho, F. A. ( 1980; ). The mechanism of sugar binding to the periplasmic receptor for galactose chemotaxis and transport in Escherichia coli. J Biol Chem 255, 2465–2471.
    [Google Scholar]
  32. Miller, D. M., III, Olson, J. S., Pflugrath, J. W. & Quiocho, F. A. ( 1983; ). Rates of ligand binding to periplasmic proteins involved in bacterial transport and chemotaxis. J Biol Chem 258, 13665–13672.
    [Google Scholar]
  33. Nielsen, H., Brunak, S. & von Heijne, G. ( 1999; ). Machine learning approaches for the prediction of signal peptides and other protein sorting signals. Protein Eng 12, 3–9.[CrossRef]
    [Google Scholar]
  34. Overbeek, R., Larsen, N., Walunas, T. & 19 other authors ( 2003; ). The ergo genome analysis and discovery system. Nucleic Acids Res 31, 164–171.[CrossRef]
    [Google Scholar]
  35. Page, R. D. ( 1996; ). treeview: an application to display phylogenetic trees on personal computers. Comput Appl Biosci 12, 357–358.
    [Google Scholar]
  36. Plantinga, T. H., van der Does, C., Badia, J., Aguilar, J., Konings, W. N. & Driessen, A. J. M. ( 2004; ). Functional characterization of the Escherichia coli K-12 yiaMNO transport protein genes. Mol Membr Biol 21, 51–57.[CrossRef]
    [Google Scholar]
  37. Plantinga, T. H., van der Does, C., Tomkiewicz, D., van Keulen, G., Konings, W. N. & Driessen, A. J. M. ( 2005; ). Deletion of the yiaMNO transporter genes affects the growth characteristics of Escherichia coli K-12. Microbiology 151, 1683–1689.[CrossRef]
    [Google Scholar]
  38. Prakash, S., Cooper, G., Singhi, S. & Saier, M. H., Jr ( 2003; ). The ion transporter superfamily. Biochim Biophys Acta 1618, 79–92.[CrossRef]
    [Google Scholar]
  39. Quintero, M. J., Montesinos, M. L., Herrero, A. & Flores, E. ( 2001; ). Identification of genes encoding amino acid permeases by inactivation of selected ORFs from the Synechocystis genomic sequence. Genome Res 11, 2034–2040.[CrossRef]
    [Google Scholar]
  40. Quiocho, F. A. & Ledvina, P. S. ( 1996; ). Atomic structure and specificity of bacterial periplasmic receptors for active transport and chemotaxis: variation of common themes. Mol Microbiol 20, 17–25.[CrossRef]
    [Google Scholar]
  41. Rabus, R., Jack, D. L., Kelly, D. J. & Saier, M. H., Jr ( 1999; ). TRAP transporters: an ancient family of extracytoplasmic solute-receptor-dependent secondary active transporters. Microbiology 145, 3431–3445.
    [Google Scholar]
  42. Rohrbach, M. R., Braun, V. & Koster, W. ( 1995; ). Ferrichrome transport in Escherichia coli K-12: altered substrate specificity of mutated periplasmic FhuD and interaction of FhuD with the integral membrane protein FhuB. J Bacteriol 177, 7186–7193.
    [Google Scholar]
  43. Sanchez, J. C., Gimenez, R., Schneider, A., Fessner, W. D., Baldoma, L., Aguilar, J. & Badia, J. ( 1994; ). Activation of a cryptic gene encoding a kinase for l-xylulose opens a new pathway for the utilization of l-lyxose by Escherichia coli. J Biol Chem 269, 29665–29669.
    [Google Scholar]
  44. Severi, E., Randle, G., Kivlin, P., Whitfield, K., Young, R., Moxon, R., Kelly, D., Hood, D. & Thomas, G. ( 2005; ). Sialic acid transport in Haemophilus influenzae is essential for lipopolysaccharide sialylation and serum resistance and is dependent on a novel tripartite ATP-independent periplasmic transporter. Mol Microbiol 58, 1173–1185.[CrossRef]
    [Google Scholar]
  45. Stein, M. A., Schafer, A. & Giffhorn, F. ( 1997; ). Cloning, nucleotide sequence, and overexpression of smoS, a component of a novel operon encoding an ABC transporter and polyol dehydrogenases of Rhodobacter sphaeroides Si4. J Bacteriol 179, 6335–6340.
    [Google Scholar]
  46. Tam, R. & Saier, M. H., Jr ( 1993; ). Structural, functional, and evolutionary relationships among extracellular solute-binding receptors of bacteria. Microbiol Rev 57, 320–346.
    [Google Scholar]
  47. Tetsch, L. & Kunte, H. J. ( 2002; ). The substrate-binding protein TeaA of the osmoregulated ectoine transporter TeaABC from Halomonas elongata: purification and characterization of recombinant TeaA. FEMS Microbiol Lett 211, 213–218.[CrossRef]
    [Google Scholar]
  48. Thompson, J. D., Gibson, T. J., Plewniak, F., Jeanmougin, F. & Higgins, D. G. ( 1997; ). The clustal_x Windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25, 4876–4882.[CrossRef]
    [Google Scholar]
  49. Ullmann, R., Gross, R., Simon, J., Unden, G. & Kroger, A. ( 2000; ). Transport of C4-dicarboxylates in Wolinella succinogenes. J Bacteriol 182, 5757–5764.[CrossRef]
    [Google Scholar]
  50. Walmsley, A. R., Shaw, J. G. & Kelly, D. J. ( 1992a; ). The mechanism of ligand binding to the periplasmic C4-dicarboxylate binding protein (DctP) from Rhodobacter capsulatus. J Biol Chem 267, 8064–8072.
    [Google Scholar]
  51. Walmsley, A. R., Shaw, J. G. & Kelly, D. J. ( 1992b; ). Perturbation of the equilibrium between open and closed conformations of the periplasmic C4-dicarboxylate binding protein from Rhodobacter capsulatus. Biochemistry 31, 11175–11181.[CrossRef]
    [Google Scholar]
  52. Walmsley, A. R., Zhou, T., Borges-Walmsley, M. I. & Rosen, B. P. ( 2001; ). A kinetic model for the action of a resistance efflux pump. J Biol Chem 276, 6378–6391.[CrossRef]
    [Google Scholar]
  53. Weaver, P. F., Wall, J. D. & Gest, H. ( 1975; ). Characterisation of Rhodopseudomonas capsulata. Arch Microbiol 105, 207–216.[CrossRef]
    [Google Scholar]
  54. Winnen, B., Hvorup, R. N. & Saier, M. H., Jr ( 2003; ). The tripartite tricarboxylate transporter (TTT) family. Res Microbiol 154, 457–465.[CrossRef]
    [Google Scholar]
  55. Wyborn, N. R., Alderson, J., Andrews, S. C. & Kelly, D. J. ( 2001; ). Topological analysis of DctQ, the small integral membrane protein of the C4-dicarboxylate TRAP transporter of Rhodobacter capsulatus. FEMS Microbiol Lett 194, 13–17.[CrossRef]
    [Google Scholar]
  56. Yew, W. S. & Gerlt, J. A. ( 2002; ). Utilization of l-ascorbate by Escherichia coli K-12: assignments of functions to products of the yjf-sga and yia-sgb operons. J Bacteriol 184, 302–306.[CrossRef]
    [Google Scholar]
  57. Zhang, Z., Aboulwafa, M., Smith, M. H. & Saier, M. H., Jr ( 2003; ). The ascorbate transporter of Escherichia coli. J Bacteriol 185, 2243–2250.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.28334-0
Loading
/content/journal/micro/10.1099/mic.0.28334-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error