Transcription and autoregulation of the operon of Free

Abstract

DevR is a transcriptional regulator that mediates the genetic response of to oxygen limitation and nitric oxide exposure. is co-transcribed along with , which encodes its cognate sensor kinase, and an upstream gene, . The transcriptional activity of this operon was characterized by primer extension, transcriptional fusion and electrophoretic mobility shift assays (EMSAs) under aerobic conditions. Transcription start points (Tsps) were detected upstream of both and , and the major transcript was derived from upstream of . Sequences with similarity to sigma factor consensus elements and to DevR-binding motifs were detected in the vicinity of the Tsps by analysis. EMSAs with promoter regions and DevR protein showed that DevR binds to its own promoters in a sequence-specific manner with differing affinities. Consistent with the primer extension and EMSA data, promoters, and not promoters, were determined to be the principal promoters of this operon using reporter assays performed in and . Furthermore, DevR modulated the activity of both and c promoters. From these findings it is inferred that the operon is transcribed from multiple promoters and is autoregulated.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.28333-0
2005-12-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/151/12/4045.html?itemId=/content/journal/micro/10.1099/mic.0.28333-0&mimeType=html&fmt=ahah

References

  1. Bagchi G., Tyagi J. S, Mayuri. 2003; Hypoxia-responsive expression of Mycobacterium tuberculosis Rv3134c and devR promoters in Mycobacterium smegmatis . Microbiology 149:2303–2305 [CrossRef]
    [Google Scholar]
  2. Bashyam M. D., Kaushal D., Dasgupta S. K., Tyagi A. K. 1996; A study of mycobacterial transcriptional apparatus: identification of novel features in promoter elements. J Bacteriol 178:4847–4853
    [Google Scholar]
  3. Calamita H., Ko C., Tyagi S., Yoshimatsu T., Morrison N. E., Bishai W. R. 2005; The Mycobacterium tuberculosis SigD sigma factor controls the expression of ribosome-associated gene products in stationary phase and is required for full virulence. Cell Microbiol 7:233–244
    [Google Scholar]
  4. Cole S. T., Brosch R., Parkhill J. 39 other authors 1998; Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature 393:537–544 [CrossRef]
    [Google Scholar]
  5. Das Gupta S. K., Bashyam M. D., Tyagi A. K. 1993; Cloning and assessment of mycobacterial promoters by using a plasmid shuttle vector. J Bacteriol 175:5186–5192
    [Google Scholar]
  6. Dasgupta N., Tyagi J. S. 1998; Identification of a restriction fragment length polymorphism associated with a deletion that maps in a transcriptionally active open-reading frame, orfX , in Mycobacterium tuberculosis Erdman. Tuber Lung Dis 79:75–81 [CrossRef]
    [Google Scholar]
  7. Dasgupta N., Kapur V., Singh K. K., Das T. K., Sachdeva S., Jyothisri K., Tyagi J. S. 2000; Characterization of a two-component system, devR-devS , of Mycobacterium tuberculosis . Tuber Lung Dis 80:141–159 [CrossRef]
    [Google Scholar]
  8. Ewann F., Locht C., Supply P. 2004; Intracellular autoregulation of the Mycobacterium tuberculosis PrrA response regulator. Microbiology 150:241–246 [CrossRef]
    [Google Scholar]
  9. Florczyk M. A., McCue L. A., Purkayastha A., Currenti E., Wolin M. J., McDonough K. A. 2003; A family of acr -coregulated Mycobacterium tuberculosis genes shares a common DNA motif and requires Rv3133c ( dosR or devR ) for expression. Infect Immun 71:5332–5343 [CrossRef]
    [Google Scholar]
  10. Haydel S. E., Benjamin W. H., Dunlap N. E., Clark-Curtiss J. E Jr. 2002; Expression, autoregulation, and DNA binding properties of the Mycobacterium tuberculosis TrcR response regulator. J Bacteriol 184:2192–2203 [CrossRef]
    [Google Scholar]
  11. He H., Zahrt T. C. 2005; Identification and characterization of a regulatory sequence recognized by Mycobacterium tuberculosis persistence regulator MprA. J Bacteriol 187:202–212 [CrossRef]
    [Google Scholar]
  12. Himpens S., Locht C., Supply P. 2000; Molecular characterization of the mycobacterial SenX3-RegX3 two-component system: evidence for autoregulation. Microbiology 146:3091–3098
    [Google Scholar]
  13. Hu Y., Coates A. R. 2001; Increased levels of sigJ mRNA in late stationary phase cultures of Mycobacterium tuberculosis detected by DNA array hybridisation. FEMS Microbiol Lett 202:59–65 [CrossRef]
    [Google Scholar]
  14. Kinger A. K., Tyagi J. S. 1993; Identification and cloning of genes differentially expressed in the virulent strain of Mycobacterium tuberculosis . Gene 131:113–117 [CrossRef]
    [Google Scholar]
  15. Lewin B. 1997; Transcription. In Genes VI pp 287–334 New York: Oxford University Press;
    [Google Scholar]
  16. Malhotra V., Sharma D., Ramanathan V. D. & 8 other authors; 2004; Disruption of response regulator gene, devR , leads to attenuation in virulence of Mycobacterium tuberculosis . FEMS Microbiol Lett 231:237–245 [CrossRef]
    [Google Scholar]
  17. Manganelli R., Dubnau E., Tyagi S., Kramer F. R., Smith I. 1999; Differential expression of 10 sigma factor genes in Mycobacterium tuberculosis . Mol Microbiol 31:715–724 [CrossRef]
    [Google Scholar]
  18. Manganelli R., Provvedi R., Rodrigue S., Beaucher J., Gaudreau L., Smith I. 2004; σ factors and global gene regulation in Mycobacterium tuberculosis . J Bacteriol 186:895–902 [CrossRef]
    [Google Scholar]
  19. Miller J. H. 1972 Experiments in Molecular Genetics pp 352–355 Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  20. Nathan C., Shiloh M. U. 2000; Reactive oxygen and nitrogen intermediates in the relationship between mammalian hosts and microbial pathogens. Proc Natl Acad Sci U S A 97:8841–8848 [CrossRef]
    [Google Scholar]
  21. Nystrom T., Neidhardt F. C. 1992; Cloning, mapping and nucleotide sequencing of a gene encoding a universal stress protein in Escherichia coli . Mol Microbiol 6:3187–3198 [CrossRef]
    [Google Scholar]
  22. Nystrom T., Neidhardt F. C. 1994; Expression and role of the universal stress protein, UspA, of Escherichia coli during growth arrest. Mol Microbiol 11:537–544 [CrossRef]
    [Google Scholar]
  23. Parish T., Smith D. A., Kendall S., Casali N., Bancroft G. J., Stoker N. G. 2003; Deletion of two-component regulatory systems increases the virulence of Mycobacterium tuberculosis . Infect Immun 71:1134–1140 [CrossRef]
    [Google Scholar]
  24. Park H. D., Guinn K. M., Harrell M. I., Liao R., Voskuil M. I., Tompa M., Schoolnik G. K., Sherman D. R. 2003; Rv3133c/ dosR is a transcription factor that mediates the hypoxic response of Mycobacterium tuberculosis . Mol Microbiol 48:833–843 [CrossRef]
    [Google Scholar]
  25. Paul S., Birkey S., Liu W., Hulett F. M. 2004; Autoinduction of Bacillus subtilis phoPR operon transcription results from enhanced transcription from E σ A- and E σ E-responsive promoters by phosphorylated PhoP. J Bacteriol 186:4262–4275 [CrossRef]
    [Google Scholar]
  26. Raman S., Hazra R., Dascher C. C., Husson R. N. 2004; Transcription regulation by the Mycobacterium tuberculosis alternative sigma factor SigD and its role in virulence. J Bacteriol 186:6605–6616 [CrossRef]
    [Google Scholar]
  27. Roberts D. M., Liao R. P., Wisedchaisri G., Hol W. G., Sherman D. R. 2004; Two sensor kinases contribute to the hypoxic response of Mycobacterium tuberculosis . J Biol Chem 279:23082–23087 [CrossRef]
    [Google Scholar]
  28. Saini D. K., Malhotra V., Dey D., Pant N., Das T. K., Tyagi J. S. 2004; DevR-DevS is a bona fide two-component system of Mycobacterium tuberculosis that is hypoxia-responsive in the absence of the DNA-binding domain of DevR. Microbiology 150:865–875 [CrossRef]
    [Google Scholar]
  29. Sala C., Forti F., Di Florio E., Canneva F., Milano A., Riccardi G., Ghisotti D. 2003; Mycobacterium tuberculosis FurA autoregulates its own expression. J Bacteriol 185:5357–5362 [CrossRef]
    [Google Scholar]
  30. Sambrook J., Russell D. W. 2001 Molecular Cloning: a Laboratory Manual , 3rd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  31. Scarlato V., Prugnola A., Arico B., Rappuoli R. 1990; Positive transcriptional feedback at the bvg locus controls expression of virulence factors in Bordetella pertussis . Proc Natl Acad Sci U S A 87:6753–6757 [CrossRef]
    [Google Scholar]
  32. Soncini F. C., Vescovi E. G., Groisman E. A. 1995; Transcriptional autoregulation of the Salmonella typhimurium phoPQ operon. J Bacteriol 177:4364–4371
    [Google Scholar]
  33. Tabor S., Richardson C. C. 1985; A bacteriophage T7 RNA polymerase/promoter system for controlled exclusive expression of specific genes. Proc Natl Acad Sci U S A 82:1074–1078 [CrossRef]
    [Google Scholar]
  34. Valdivia R. H., Hromockyj A. E., Monack D., Ramakrishnan L., Falkow S. 1996; Applications for green fluorescent protein (GFP) in the study of host-pathogen interactions. Gene 173:47–52 [CrossRef]
    [Google Scholar]
  35. Verma A., Sampla A. K., Tyagi J. S. 1999; Mycobacterium tuberculosis rrn promoters: differential usage and growth rate-dependent control. J Bacteriol 181:4326–4333
    [Google Scholar]
  36. Voskuil M. I., Schnappinger D., Visconti K. C., Harrell M. I., Dolganov G. M., Sherman D. R., Schoolnik G. K. 2003; Inhibition of respiration by nitric oxide induces a Mycobacterium tuberculosis dormancy program. J Exp Med 198:705–713 [CrossRef]
    [Google Scholar]
  37. Wayne L. G., Sohaskey C. D. 2001; Nonreplicating persistence of Mycobacterium tuberculosis . Annu Rev Microbiol 55:139–163 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.28333-0
Loading
/content/journal/micro/10.1099/mic.0.28333-0
Loading

Data & Media loading...

Most cited Most Cited RSS feed