1887

Abstract

The organic acid lactate is the predominant fermentation product of . The undissociated form of this organic acid is a strong growth inhibitor for the organism. Different theories have been postulated to explain the inhibitory effects of lactic acid: (i) toxicity arising from the dissipation of the membrane potential, (ii) acidification of the cytosol, or (iii) intracellular anion accumulation. In general, organic acid stresses are complex to study, since their toxicity is highly dependent on their degree of dissociation and thus on the pH. In this study, transcription profiles of grown in steady-state cultures that varied in lactate/lactic acid concentration, pH, osmolarity and absolute and relative growth rate, were compared by microarray analysis. By doing so, the differential expression of multiple groups of genes could specifically be attributed to the different aspects of lactic acid stress. A highly coherent group of lactic acid-responsive, cell surface protein-encoding genes was identified, to which no function has previously been assigned. Moreover, a group of genes that showed increased expression in response to the combination of lactic acid and a lower growth rate is expected to be involved in the formation of the alternative fermentation end-products malate, acetate and ethanol. One of these pathways is the phosphoketolase by-pass that is typical for bifidobacteria.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.28304-0
2005-12-01
2019-11-21
Loading full text...

Full text loading...

/deliver/fulltext/micro/151/12/3881.html?itemId=/content/journal/micro/10.1099/mic.0.28304-0&mimeType=html&fmt=ahah

References

  1. Ang, S., Lee, C.-Z., Peck, K., Sindici, M., Matrubutham, U., Gleeson, M. A. & Wang, J.-T. ( 2001; ). Acid-induced gene expression in Helicobacter pylori, study in genomic scale by microarray. Infect Immun 69, 1679–1686.[CrossRef]
    [Google Scholar]
  2. Arnold, C. N., McElhanon, J., Lee, A., Leonhart, R. & Siegele, D. A. ( 2001; ). Global analysis of Escherichia coli gene expression during the acetate-induced acid tolerance response. J Bacteriol 183, 2178–2186.[CrossRef]
    [Google Scholar]
  3. Axe, D. D. & Bailey, J. E. ( 1995; ). Transport of lactate and acetate through the energized cytoplasmic membrane of Escherichia coli. Biotechnol Bioeng 47, 8–19.[CrossRef]
    [Google Scholar]
  4. Azcarate-Peril, M. A., Altermann, E., Hoover-Fitzula, R. L., Cano, R. J. & Klaenhammer, T. R. ( 2004; ). Identification and inactivation of genetic loci involved with Lactobacillus acidophilus acid tolerance. Appl Environ Microbiol 70, 5315–5322.[CrossRef]
    [Google Scholar]
  5. Bond, D. R. & Russell, J. B. ( 1996; ). A role for fructose 1,6-diphosphate in the ATPase mediated energy spilling reaction of Streptococcus bovis. Appl Environ Microbiol 62, 2095–2099.
    [Google Scholar]
  6. Booth, I. R. ( 1985; ). Regulation of cytoplasmic pH in bacteria. Microbiol Rev 49, 359–378.
    [Google Scholar]
  7. Cook, G. M. & Russell, J. B. ( 1994; ). The effect of extracellular pH and lactic acid on pH homeostasis in Lactococcus lactis and Streptococcus bovis. Curr Microbiol 28, 165–168.[CrossRef]
    [Google Scholar]
  8. Cotter, P. D. & Hill, C. ( 2003; ). Surviving the acid test, responses of Gram-positive bacteria to low pH. Microbiol Mol Biol Rev 67, 429–453.[CrossRef]
    [Google Scholar]
  9. Cotter, P. D., Gahan, C. G. & Hill, C. ( 2001; ). A glutamate decarboxylase system protects Listeria monocytogenes in gastric fluid. Mol Microbiol 40, 465–475.[CrossRef]
    [Google Scholar]
  10. Diez-Gonzalez, F. & Russell, J. B. ( 1997; ). The effects of carbonylcyanide-m-chlorophenylhydrazone (CCCP) and acetate on Escherichia coli O157, H7 and K-12, uncoupling versus anion accumulation. FEMS Microbiol Lett 151, 71–76.[CrossRef]
    [Google Scholar]
  11. Drici-Cachon, Z., Guzzo, J., Cavin, J.-F. & Diviès, C. ( 1996; ). Acid tolerance in Leuconostoc oenos. Isolation and characterization of an acid-resistant mutant. Appl Microbiol Biotechnol 44, 785–789.
    [Google Scholar]
  12. Eisen, M. B., Spellman, P. T., Brown, P. O. & Botstein, D. ( 1998; ). Cluster analysis and display of genome-wide expression patterns. Proc Natl Acad Sci U S A 95, 14863–14868.[CrossRef]
    [Google Scholar]
  13. Ferain, T., Hobbs, J. N., Jr, Richardson, J., Bernard, N., Garmyn, D., Hols, P., Allen, N. E. & Delcour, J. ( 1996a; ). Knockout of the two ldh genes has a major impact on peptidoglycan precursor synthesis in Lactobacillus plantarum. J Bacteriol 178, 5431–5437.
    [Google Scholar]
  14. Ferain, T., Schanck, A. N. & Delcour, J. ( 1996b; ). 13C Nuclear Magnetic Resonance analysis of glucose and citrate end products in an ldhL-ldhD double-knockout strain of Lactobacillus plantarum. J Bacteriol 178, 7311–7315.
    [Google Scholar]
  15. Fischetti, V. A., Pancholi, V. & Schneewind, O. ( 1990; ). Conservation of a hexapeptide sequence in the anchor region of surface proteins from Gram-positive cocci. Mol Microbiol 4, 1603–1605.[CrossRef]
    [Google Scholar]
  16. Fisher, M. A., Plikaytis, B. B. & Schinnick, T. M. ( 2002; ). Microarray analysis of the Mycobacterium tuberculosis transcriptional response to the acidic conditions found in phagosomes. J Bacteriol 184, 4025–4032.[CrossRef]
    [Google Scholar]
  17. Giard, J.-C., Laplace, J.-M., Rincé. ,, A., Pichereau, V., Benachour, A., Leboeuf, C., Flahaut, S., Auffray, Y. & Hartke, A. ( 2001; ). The stress proteome of Enterococcus faecalis. Electrophoresis 22, 2947–2954.[CrossRef]
    [Google Scholar]
  18. Giraud, E., Lelong, B. & Raimbault, M. ( 1991; ). Influence of pH and initial lactate concentration on the growth of Lactobacillus plantarum. Appl Microbiol Biotechnol 36, 96–99.[CrossRef]
    [Google Scholar]
  19. Hartke, A., Bouché, S., Giard, J.-C., Benachour, A., Boutibonnes, P. & Auffray, Y. ( 1996; ). The lactic acid stress response of Lactococcus lactis subsp. lactis. Curr Microbiol 33, 194–199.[CrossRef]
    [Google Scholar]
  20. Houtsma, P. C., de Wit, J. C. & Rombouts, F. M. ( 1993; ). Minimum inhibitory concentration (MIC) of sodium lactate for pathogens and spoilage organisms occurring in meat products. Int J Food Microbiol 20, 247–257.[CrossRef]
    [Google Scholar]
  21. Hua, Q., Yang, C., Oshima, T., Mori, H. & Shimizu, K. ( 2004; ). Analysis of gene expression in Escherichia coli in response to changes in growth-limiting chemostat cultures. Appl Environ Microbiol 70, 2354–2366.[CrossRef]
    [Google Scholar]
  22. Hutkins, R. W. & Nannen, N. L. ( 1993; ). pH homeostasis in lactic acid bacteria. J Dairy Sci 76, 2354–2365.[CrossRef]
    [Google Scholar]
  23. Kandler, O. ( 1983; ). Carbohydrate metabolism in lactic acid bacteria. Antonie van Leeuwenhoek 49, 209–224.[CrossRef]
    [Google Scholar]
  24. Kashket, E. R. ( 1987; ). Bioenergetics of lactic acid bacteria, cytoplasmic pH and osmotolerance. FEMS Microbiol Rev 46, 233–244.[CrossRef]
    [Google Scholar]
  25. Kirkpatrick, C., Maurer, L. M., Oyelakin, N. E., Yoncheva, Y. N., Maurer, R. & Slonczewski, J. L. ( 2001; ). Acetate and formate stress, opposite responses in the proteome of Escherichia coli. J Bacteriol 183, 6466–6477.[CrossRef]
    [Google Scholar]
  26. Kleerebezem, M., Boekhorst, J., van Kranenburg, R. & 17 other authors ( 2003; ). Complete genome sequence of Lactobacillus plantarum WCFS1. Proc Natl Acad Sci U S A 100, 1990–1995.[CrossRef]
    [Google Scholar]
  27. Krogh, A., Larsson, B., von Heijne, G. & Sonnhammer, E. L. L. ( 2001; ). Predicting transmembrane protein topology with a Hidden Markov Model, application to complete genomes. J Mol Biol 305, 567–580.[CrossRef]
    [Google Scholar]
  28. Len, A. C. L., Harty, D. W. S. & Jacques, N. A. ( 2004; ). Proteome analysis of Streptococcus mutans metabolic phenotype during acid tolerance. Microbiology 150, 1353–1366.[CrossRef]
    [Google Scholar]
  29. Lim, E. M., Ehrlich, S. D. & Maguin, E. ( 2000; ). Identification of stress-inducible proteins in Lactobacillus delbrueckii subsp. bulgaricus. Electrophoresis 21, 2557–2561.[CrossRef]
    [Google Scholar]
  30. Lindgren, S. E., Axelsson, L. T. & McFeeters, R. F. ( 1990; ). Anaerobic l-lactate degradation by Lactobacillus plantarum. FEMS Microbiol Lett 66, 209–214.
    [Google Scholar]
  31. McDonald, M. C., Flemming, H. P. & Hassan, H. M. ( 1990; ). Acid tolerance of Leuconostoc mesenteroides and Lactobacillus plantarum. Appl Environ Microbiol 56, 2120–2124.
    [Google Scholar]
  32. Merrell, D. S., Goodrich, M. L., Otto, G., Tompkins, L. S. & Falkow, S. ( 2003; ). pH-regulated gene expression of the gastric pathogen Helicobacter pylori. Infect Immun 71, 3529–3539.[CrossRef]
    [Google Scholar]
  33. Olsen, E. B., Russell, J. B. & Henick-Kling, T. ( 1991; ). Electrogenic l-malate transport by Lactobacillus plantarum, a basis for energy derivation from malolactic fermentation. J Bacteriol 173, 6199–6206.
    [Google Scholar]
  34. Padan, I., Zilberstein, D. & Schuldiner, S. ( 1981; ). pH homeostasis in bacteria. Biochim Biophys Acta 650, 151–166.[CrossRef]
    [Google Scholar]
  35. Pieterse, B., Jellema, R. H. & van der Werf, M. J. ( 2005; ). Quenching of microbial samples for increased reliability of microarray data. J Microbiol Meth, in press.
    [Google Scholar]
  36. Polen, T., Rittmann, D., Wendisch, V. F. & Sahm, H. ( 2003; ). DNA Microarray analyses of the long-term adaptive response of Escherichia coli to acetate and propionate. Appl Environ Microbiol 69, 1759–1774.[CrossRef]
    [Google Scholar]
  37. Price, C. W., Fawcett, P., Cérémonie, H., Su, N., Murphy, C. K. & Youngman, P. ( 2001; ). Genome-wide analysis of the general stress response of Bacillus subtilis. Mol Microbiol 41, 757–774.
    [Google Scholar]
  38. Quivey, R. G., Faustoferri, R. C., Clancy, K. A. & Marquis, R. E. ( 1995; ). Acid adaptation in Streptococcus mutans UA159 alleviates sensitization to environmental stress due to recA deficiency. FEMS Microbiol Lett 126, 257–261.[CrossRef]
    [Google Scholar]
  39. Russell, J. B. ( 1992; ). Another explanation for the accumulation of fermentation acids at low pH, anion accumulation versus uncoupling. J Appl Bacteriol 73, 363–370.[CrossRef]
    [Google Scholar]
  40. Russell, J. B. & Diez-Gonzalez, F. ( 1998; ). The effects of fermentation acids on bacterial growth. Adv Microbial Physiol 39, 205–234.
    [Google Scholar]
  41. Salmond, C. V., Kroll, R. G. & Booth, I. R. ( 1984; ). The effect of food preservatives on pH homeostasis in Escherichia coli. J Gen Microbiol 130, 2845–2850.
    [Google Scholar]
  42. Shelef, L. A. ( 1994; ). Antimicrobial effects of lactates, a review. J Food Protection 57, 445–450.
    [Google Scholar]
  43. Stancik, L. M., Stancik, D. M., Schmidt, B., Barnhart, D. M., Yoncheva, Y. N. & Slonczewski, J. L. ( 2002; ). pH-dependent expression of periplasmatic proteins and amino acid catabolism in Escherichia coli. J Bacteriol 184, 4246–4258.[CrossRef]
    [Google Scholar]
  44. Tseng, C.-P. & Montville, T. J. ( 1990; ). Enzyme activities affecting end product distribution by Lactobacillus plantarum in response to changes in pH and O2. Appl Environ Microbiol 56, 2761–2763.
    [Google Scholar]
  45. Tweeddale, H., Notley-McRobb, L. & Ferenci, T. ( 1998; ). Effect of slow growth on metabolism of Escherichia coli, as revealed by global metabolite pool (‘metabolome’) analysis. J Bacteriol 180, 5109–5116.
    [Google Scholar]
  46. van de Guchte, M., Serror, P., Chervaux, C., Smokvina, T., Ehrlich, S. D. & Maguin, E. ( 2002; ). Stress responses in lactic acid bacteria. Antonie van Leeuwenhoek 82, 187–216.[CrossRef]
    [Google Scholar]
  47. van der Rest, M. E., Kamminga, A. H., Nakano, A., Anraku, Y., Poolman, B. & Konings, W. N. ( 1995; ). The plasma membrane of Saccharomyces cerevisiae, structure, function, and biogenesis. Microbiol Rev 59, 304–322.
    [Google Scholar]
  48. Wen, Y., Marcus, E. A., Matrubutham, U., Gleeson, M. A., Scott, D. R. & Sachs, G. ( 2003; ). Acid-adaptive genes of Helicobacter pylori. Infect Immun 71, 5921–5939.[CrossRef]
    [Google Scholar]
  49. Wilkins, J. C., Homer, K. A. & Beighton, D. ( 2002; ). Analysis of Streptococcus mutans proteins modulated by culture under acidic conditions. Appl Environ Microbiol 68, 2382–2390.[CrossRef]
    [Google Scholar]
  50. Yamamoto, Y., Higuchi, M., Poole, L. B. & Kamio, Y. ( 2000; ). Role of the dpr product in oxygen tolerance in Streptococcus mutans. J Bacteriol 182, 3740–3747.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.28304-0
Loading
/content/journal/micro/10.1099/mic.0.28304-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error