1887

Abstract

The Gram-positive soil bacterium and cellulose degrader synthesizes the mycelium-associated enzyme CpeB, which displays haem-dependent catalase and peroxidase activity, as well as haem-independent manganese-peroxidase activity. The expression of the operon depends on the redox regulator FurS and the presence of the haem-binding protein HbpS. Upstream of , the neighbouring and genes were identified. SenS is a sensor histidine kinase with five predicted N-terminally located transmembrane domains. SenR is the corresponding response regulator with a C-terminal DNA-binding motif. Comparative transcriptional and biochemical studies with a designed / chromosomal disruption mutant and a set of constructed transformants showed that the presence of the novel two-component system SenS/SenR negatively modulates the expression of the operon and the gene. The presence of SenS/SenR enhances considerably the resistance of to haemin and the redox-cycling compound plumbagin, suggesting that this system could participate directly or indirectly in the sensing of redox changes. Epitope-tagged HbpS (obtained from an transformant) as well as the native HbpS interact specifically with the purified SenS fusion protein. On the basis of these findings, together with data deduced from the mutant strain, HbpS is suggested to act as an accessory protein that communicates with the sensor protein to modulate the corresponding regulatory cascade. Interestingly, close and distant homologues, respectively, of the SenS/SenR system are encoded within the A3(2) and genomes, but not within other known bacterial genomes. Hence the SenS/SenR system appears to be confined to streptomycetes.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.28298-0
2005-11-01
2020-04-10
Loading full text...

Full text loading...

/deliver/fulltext/micro/151/11/3603.html?itemId=/content/journal/micro/10.1099/mic.0.28298-0&mimeType=html&fmt=ahah

References

  1. Altschul S. F., Madden T. L., Schäffer A. A., Zhang J., Zhang Z., Miller W., Lipman D. J. 1997; Gapped blast and psi-blast: a new generation of protein database search programs. Nucleic Acids Res25:3389–3402[CrossRef]
    [Google Scholar]
  2. Baikalov I., Schroder I., Kaczor-Grzeskowiak M., Grzeskowiak K., Gunsalus R. P., Dickerson R. E. 1996; Structure of the Escherichia coli response regulator NarL. Biochemistry35:11053–11061[CrossRef]
    [Google Scholar]
  3. Bauer C. E., Elsen S., Bird T. H. 1999; Mechanisms for redox control of gene expression. Annu Rev Microbiol53:495–523[CrossRef]
    [Google Scholar]
  4. Beck S., Pohl F. M. 1984; DNA sequencing with direct blotting electrophoresis. EMBO J3:2905–2909
    [Google Scholar]
  5. Bentley S. D., Chater K. F., Cerdeno-Tarraga A. M.. 40 other authors 2002; Complete genome sequence of the model actinomycete Streptomyces coelicolor A3(2. Nature417:141–147[CrossRef]
    [Google Scholar]
  6. Blake M. S., Johnston K. H., Russel-Jones G. J., Gotschlich E. C. 1984; A rapid, sensitive method for detection of alkaline phosphatase-conjugated anti-antibody on Western-blots. Anal Biochem136:175–179[CrossRef]
    [Google Scholar]
  7. Blondelet-Rouault M. H., Weiser J., Lebrihi A., Branny P., Pernodet J. L. 1997; Antibiotic resistance gene cassettes derived from the omega interposon for use in E. coli and Streptomyces . Gene190:315–317[CrossRef]
    [Google Scholar]
  8. Brian P., Riggle P. J., Santos R. A., Champness W. C. 1996; Global negative regulation of Streptomyces coelicolor antibiotic synthesis mediated by an absA -encoded putative signal transduction system. J Bacteriol178:3221–3231
    [Google Scholar]
  9. Chang H. M., Chen M. Y., Shieh Y. T., Bibb M. J., Chen C. W. 1996; The CutR/S signal transduction system of Streptomyces lividans represses the biosynthesis of the polyketide antibiotic actinorhodin. Mol Microbiol21:1075–1085
    [Google Scholar]
  10. Dower W. J., Miller J. F., Ragsdale C. W. 1988; High efficiency transformation of E. coli by high voltage electroporation. Nucleic Acids Res16:6127–6145[CrossRef]
    [Google Scholar]
  11. Fabret C., Feher V. A., Hoch J. A. 1999; Two-component signal transduction in Bacillus subtilis : how one organism sees its world. J Bacteriol181:1975–1983
    [Google Scholar]
  12. Fischer H. M. 1994; Genetic regulation of nitrogen fixation in rhizobia. Microbiol Rev58:352–386
    [Google Scholar]
  13. Garnerone A. M., Cabanes D., Foussard M., Boistard P., Batut J. 1999; Inhibition of the FixL sensor kinase by the FixT protein in Sinorhizobium meliloti . J Biol Chem274:32500–32506[CrossRef]
    [Google Scholar]
  14. Gasteiger E., Gattiker A., Hoogland C., Ivanyi I., Appel R. D., Bairoch A. 2003; ExPASy: the proteomics server for in-depth protein knowledge and analysis. Nucleic Acids Res31:3784–3788[CrossRef]
    [Google Scholar]
  15. Gold L., Pribnow D., Schneider T., Shninedling S., Singer B. S., Stormo G. 1981; Translational initiation in prokaryotes. Annu Rev Microbiol35:365–403[CrossRef]
    [Google Scholar]
  16. Hall R. A. 2004; Studying protein–protein interactions via blot overlay or Far Western blot. Methods Mol Biol261:167–174
    [Google Scholar]
  17. Higgins D. G., Bleasby A. J., Fuchs R. 1992; clustal v: improved software for multiple sequence alignment. Comput Appl Biosci8:189–191
    [Google Scholar]
  18. Hong H. J., Hutchings M. I., Neu J. M., Wright G. D., Paget M. S., Buttner M. J. 2004; Characterization of an inducible vancomycin resistance system in Streptomyces coelicolor reveals a novel gene ( vanK ) required for drug resistance. Mol Microbiol52:1107–1121[CrossRef]
    [Google Scholar]
  19. Hopwood D. A., Bibb M. J., Chater K. F.. 7 other authors 1985; Genetic Manipulation of Streptomyces: a Laboratory Manual Norwich: John Innes Foundation;
    [Google Scholar]
  20. Hutchings M. I., Hoskisson P. A., Chandra G., Buttner M. J. 2004; Sensing and responding to diverse extracellular signals? Analysis of the sensor kinases and response regulators of Streptomyces coelicolor A3(2. Microbiology150:2795–2806[CrossRef]
    [Google Scholar]
  21. Ikeda H., Ishikawa J., Hanamoto K.. 7 other authors 2003; Complete genome sequence and comparative analysis of the industrial microorganism Streptomyces avermitilis . Nat Biotechnol21:526–531[CrossRef]
    [Google Scholar]
  22. Laemmli U. K. 1970; Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature227:680–685[CrossRef]
    [Google Scholar]
  23. Loenen W. A., Blattner F. R. 1983; Lambda Charon vectors (Ch32, 33, 34 and 35) adapted for DNA cloning in recombination-deficient hosts. Gene26:171–179[CrossRef]
    [Google Scholar]
  24. Magnuson R., Solomon J., Grossman A. D. 1994; Biochemical and genetic characterization of a competence pheromone from B. subtilis . Cell77:207–216[CrossRef]
    [Google Scholar]
  25. Marino M., Ramos H. C., Hoffmann T., Glaser P., Jahn D. 2001; Modulation of anaerobic energy metabolism of Bacillus subtilis by arf M ( ywi D. J Bacteriol183:6815–6821[CrossRef]
    [Google Scholar]
  26. Mizuno T. 1997; Compilation of all genes encoding two-component phosphotransfer signal transducers in the genome of Escherichia coli . DNA Res4:161–168[CrossRef]
    [Google Scholar]
  27. Nielsen H., Engelbrecht J., Brunak S., von Heijne G. 1997; Identification of prokaryotic and eukaryotic signal peptides and prediction of their cleavage sites. Protein Eng10:1–6[CrossRef]
    [Google Scholar]
  28. Ortiz de Orué Lucana D., Schrempf H. 2000; The DNA-binding characteristics of the Streptomyces reticuli regulator FurS depend on the redox state of its cysteine residues. Mol Gen Genet264:341–353[CrossRef]
    [Google Scholar]
  29. Ortiz de Orué Lucana D., Tröller M., Schrempf H. 2003; Amino acid residues involved in reversible thiol formation and zinc ion binding in the Streptomyces reticuli redox regulator FurS. Mol Genet Genomics268:618–627
    [Google Scholar]
  30. Ortiz de Orué Lucana D., Schaa T., Schrempf H. 2004; The novel extracellular Streptomyces reticuli haem-binding protein HbpS influences the production of the catalase-peroxidase CpeB. Microbiology150:2575–2585[CrossRef]
    [Google Scholar]
  31. Pao G. M., Saier M. H. Jr. 1995; Response regulators of bacterial signal transduction systems: selective domain shuffling during evolution. J Mol Evol40:136–154[CrossRef]
    [Google Scholar]
  32. Parkinson J. S. 1993; Signal transduction schemes of bacteria. Cell73:857–871[CrossRef]
    [Google Scholar]
  33. Parkinson J. S., Kofoid E. C. 1992; Communication modules in bacterial signalling proteins. Annu Rev Genet26:71–112[CrossRef]
    [Google Scholar]
  34. Pestova E. V., Havarstein L. S., Morrison D. A. 1996; Regulation of competence for genetic transformation in Streptomyces pneumoniae by an auto-induced peptide pheromone and a two-component regulatory system. Mol Microbiol21:853–862[CrossRef]
    [Google Scholar]
  35. Sambrook J., Fritsch E. F., Maniatis T. 1989; Molecular Cloning: a Laboratory Manual , 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  36. Schlochtermeier A., Niemeyer F., Schrempf H. 1992; Biochemical and electron microscopic studies of the Streptomyces reticuli cellulase (Avicelase) in its mycelium-associated and extracellular forms. Appl Environ Microbiol58:3240–3248
    [Google Scholar]
  37. Schmitt M. P. 1999; Identification of a two-component signal transduction system from Corynebacterium diphtheriae that activates gene expression in response to the presence of haem and haemoglobin. J Bacteriol181:5330–5340
    [Google Scholar]
  38. Sheeler N. L., MacMillan S. V., Nodwell J. R. 2005; Biochemical activities of the absA two component system of Streptomyces coelicolor . J Bacteriol187:687–696[CrossRef]
    [Google Scholar]
  39. Sola-Landa A., Moura R. S., Martin J. F. 2003; The two-component PhoR-PhoP system controls both primary metabolism and secondary metabolite biosynthesis in Streptomyces lividans . Proc Natl Acad Sci U S A100:6133–6138[CrossRef]
    [Google Scholar]
  40. Stojiljkovic I., Evavold B. D., Kumar V. 2001; Antimicrobial properties of porphyrins. Expert Opin Investig Drugs10:309–320[CrossRef]
    [Google Scholar]
  41. Strohl W. R. 1992; Compilation and analysis of DNA sequences associated with apparent streptomycete promoters. Nucleic Acids Res20:961–974[CrossRef]
    [Google Scholar]
  42. Tsujibo H., Hatano N., Okamoto T., Endo H., Miyamoto K., Inamori Y. 1999; Synthesis of chitinase in Streptomyces thermoviolaceus is regulated by a two-component sensor-regulator system. FEMS Microbiol Lett181:83–90[CrossRef]
    [Google Scholar]
  43. Vara J., Lewandowska-Skarbek M., Wang Y.-G., Donadio S., Hutchinson C. R. 1989; Cloning of genes governing the deoxysugar portion of the erythromycin biosynthesis pathway in Saccharopolyspora erythraea ( Streptomyces erythreus ). J Bacteriol171:5872–5881
    [Google Scholar]
  44. Villarejo M. R., Zamenhof P. J., Zabin I. 1972; Beta-galactosidase. In vivo -complementation. J Biol Chem247:2212–2216
    [Google Scholar]
  45. Zou P., Schrempf H. 2000; The heme-independent manganese-peroxidase activity depends on the presence of the C-terminal domain within the Streptomyces reticuli catalase-peroxidase CpeB. Eur J Biochem267:2840–2849[CrossRef]
    [Google Scholar]
  46. Zou P., Borovok I., Ortiz de Orué Lucana D., Müller D., Schrempf H. 1999; The mycelium-associated Streptomyces reticuli catalase-peroxidase, its gene and regulation by FurS. Microbiology145:549–559[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.28298-0
Loading
/content/journal/micro/10.1099/mic.0.28298-0
Loading

Data & Media loading...

Most cited this month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error