1887

Abstract

Production of the secondary metabolite phenazine-1-carboxamide (PCN) by PCL1391 is crucial for biocontrol activity against the phytopathogen f. sp. on tomato. Regulation of PCN production involves the two-component signalling system GacS/GacA, the quorum-sensing system PhzI/PhzR and the regulator PsrA. This paper reports that a functional is required for optimal PCN and -hexanoyl--homoserine lactone (C-HSL) production. Constitutive expression of is able to complement partially the defect of a mutant for PCN and -acylhomoserine lactone production. Western blotting shows that is regulated by . Altogether, these results suggest the existence of a cascade consisting of / upstream of and , which influence expression of /. Overproduction of complements the effects on PCN and C-HSL production of all mutations tested in the regulatory cascade, which shows that a functional quorum-sensing system is essential and sufficient for PCN synthesis. In addition, the relative amounts of PCN, phenazine-1-carboxylic acid and C-HSL produced by and mutants harbouring a constitutively expressed indicate an even more complex network of interactions, probably involving other genes. Preliminary microarray analyses of the transcriptomics of the and mutants support the model of regulation described in this study and allow identification of new genes that might be involved in secondary metabolism.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.28284-0
2006-01-01
2019-11-21
Loading full text...

Full text loading...

/deliver/fulltext/micro/152/1/43.html?itemId=/content/journal/micro/10.1099/mic.0.28284-0&mimeType=html&fmt=ahah

References

  1. Ausubel, F. M., Brent, R., Kingston, R. E., Moore, D. D., Seidman, J. G., Smith, J. A. & Struhl, K. ( 1997; ). Current Protocols in Molecular Biology. New York: Wiley.
  2. Bakker, P. A., Glandorf, D. C., Viebahn, M. & 7 other authors ( 2002; ). Effects of Pseudomonas putida modified to produce phenazine-1-carboxylic acid and 2,4-diacetylphloroglucinol on the microflora of field grown wheat. Antonie Van Leeuwenhoek 81, 617–624.[CrossRef]
    [Google Scholar]
  3. Bassler, B. L. ( 1999; ). How bacteria talk to each other: regulation of gene expression by quorum sensing. Curr Opin Microbiol 2, 582–587.[CrossRef]
    [Google Scholar]
  4. Bertani, I. & Venturi, V. ( 2004; ). Regulation of the N-acyl homoserine lactone-dependent quorum-sensing system in rhizosphere Pseudomonas putida WCS358 and cross-talk with the stationary-phase RpoS sigma factor and the global regulator GacA. Appl Environ Microbiol 70, 5493–5502.[CrossRef]
    [Google Scholar]
  5. Blumer, C., Heeb, S., Pessi, G. & Haas, D. ( 1999; ). Global GacA-steered control of cyanide and exoprotease production in Pseudomonas fluorescens involves specific ribosome binding sites. Proc Natl Acad Sci U S A 96, 14073–14078.[CrossRef]
    [Google Scholar]
  6. Brazma, A., Hingamp, P., Quackenbush, J. & 21 other authors ( 2001; ). Minimum information about a microarray experiment (MIAME) – toward standards for microarray data. Nat Genet 29, 365–371.[CrossRef]
    [Google Scholar]
  7. Castric, P. A. ( 1975; ). Hydrogen cyanide, a secondary metabolite of Pseudomonas aeruginosa. Can J Microbiol 21, 613–618.[CrossRef]
    [Google Scholar]
  8. Chancey, S. T., Wood, D. W. & Pierson, L. S., III ( 1999; ). Two-component transcriptional regulation of N-acyl-homoserine lactone production in Pseudomonas aureofaciens. Appl Environ Microbiol 65, 2294–2299.
    [Google Scholar]
  9. Chatterjee, A., Cui, Y., Yang, H., Collmer, A., Alfano, J. R. & Chatterjee, A. K. ( 2003; ). GacA, the response regulator of a two-component system, acts as a master regulator in Pseudomonas syringae pv. tomato DC3000 by controlling regulatory RNA, transcriptional activators, and alternate sigma factors. Mol Plant Microbe Interact 16, 1106–1117.[CrossRef]
    [Google Scholar]
  10. Chin-A-Woeng, T. F. C., Bloemberg, G. V., van der Bij, A. J. & 10 other authors ( 1998; ). Biocontrol by phenazine-1-carboxamide-producing Pseudomonas chlororaphis PCL1391 of tomato root rot caused by Fusarium oxysporum f. sp. radicis-lycopersici. Mol Plant Microbe Interact 11, 1069–1077.[CrossRef]
    [Google Scholar]
  11. Chin-A-Woeng, T. F. C., Bloemberg, G. V., Mulders, I. H., Dekkers, L. C. & Lugtenberg, B. J. J. ( 2000; ). Root colonization by phenazine-1-carboxamide-producing bacterium Pseudomonas chlororaphis PCL1391 is essential for biocontrol of tomato foot and root rot. Mol Plant Microbe Interact 13, 1340–1345.[CrossRef]
    [Google Scholar]
  12. Chin-A-Woeng, T. F. C., Thomas-Oates, J. E., Lugtenberg, B. J. J. & Bloemberg, G. V. ( 2001a; ). Introduction of the phzH gene of Pseudomonas chlororaphis PCL1391 extends the range of biocontrol ability of phenazine-1-carboxylic acid-producing Pseudomonas spp. strains. Mol Plant Microbe Interact 14, 1006–1015.[CrossRef]
    [Google Scholar]
  13. Chin-A-Woeng, T. F. C., van den Broek, D., de Voer, G., van der Drift, K. M., Tuinman, S., Thomas-Oates, J. E., Lugtenberg, B. J. J. & Bloemberg, G. V. ( 2001b; ). Phenazine-1-carboxamide production in the biocontrol strain Pseudomonas chlororaphis PCL1391 is regulated by multiple factors secreted into the growth medium. Mol Plant Microbe Interact 14, 969–979.[CrossRef]
    [Google Scholar]
  14. Chin-A-Woeng, T. F. C., Bloemberg, G. V. & Lugtenberg, B. J. J. ( 2003; ). Phenazines and their role in biocontrol by Pseudomonas bacteria. New Phytol 157, 503–523.[CrossRef]
    [Google Scholar]
  15. Chin-A-Woeng, T. F. C., van den Broek, D., Lugtenberg, B. J. J. & Bloemberg, G. V. ( 2005; ). The Pseudomonas chlororaphis PCL1391 sigma regulator psrA represses the production of the antifungal metabolite phenazine-1-carboxamide. Mol Plant Microbe Interact 18, 244–253.[CrossRef]
    [Google Scholar]
  16. Deziel, E., Comeau, Y. & Villemur, R. ( 2001; ). Initiation of biofilm formation by Pseudomonas aeruginosa 57RP correlates with emergence of hyperpiliated and highly adherent phenotypic variants deficient in swimming, swarming, and twitching motilities. J Bacteriol 183, 1195–1204.[CrossRef]
    [Google Scholar]
  17. Ditta, G., Stanfield, S., Corbin, D. & Helinski, D. R. ( 1980; ). Broad host range DNA cloning system for gram-negative bacteria: construction of a gene bank of Rhizobium meliloti. Proc Natl Acad Sci U S A 77, 7347–7351.[CrossRef]
    [Google Scholar]
  18. Folders, J., Algra, J., Roelofs, M. S., van Loon, L. C., Tommassen, J. & Bitter, W. ( 2001; ). Characterization of Pseudomonas aeruginosa chitinase, a gradually secreted protein. J Bacteriol 183, 7044–7052.[CrossRef]
    [Google Scholar]
  19. Fujita, M., Tanaka, K., Takahashi, H. & Amemura, A. ( 1994; ). Transcription of the principal sigma-factor genes, rpoD and rpoS, in Pseudomonas aeruginosa is controlled according to the growth phase. Mol Microbiol 13, 1071–1077.[CrossRef]
    [Google Scholar]
  20. Galperin, M. Y., Nikolskaya, A. N. & Koonin, E. V. ( 2001; ). Novel domains of the prokaryotic two-component signal transduction systems. FEMS Microbiol Lett 203, 11–21.[CrossRef]
    [Google Scholar]
  21. Haas, D. & Defago, G. ( 2005; ). Biological control of soil-borne pathogens by fluorescent pseudomonads. Nat Rev Microbiol 3, 307–319.[CrossRef]
    [Google Scholar]
  22. Hanahan, D. ( 1983; ). Studies on transformation of Escherichia coli with plasmids. J Mol Biol 166, 557–580.[CrossRef]
    [Google Scholar]
  23. Heeb, S. & Haas, D. ( 2001; ). Regulatory roles of the GacS/GacA two-component system in plant-associated and other gram-negative bacteria. Mol Plant Microbe Interact 14, 1351–1363.[CrossRef]
    [Google Scholar]
  24. Heeb, S., Blumer, C. & Haas, D. ( 2002; ). Regulatory RNA as mediator in GacA/RsmA-dependent global control of exoproduct formation in Pseudomonas fluorescens CHA0. J Bacteriol 184, 1046–1056.[CrossRef]
    [Google Scholar]
  25. Heurlier, K., Williams, F., Heeb, S., Dormond, C., Pessi, G., Singer, D., Camara, M., Williams, P. & Haas, D. ( 2004; ). Positive control of swarming, rhamnolipid synthesis, and lipase production by the posttranscriptional RsmA/RsmZ system in Pseudomonas aeruginosa PAO1. J Bacteriol 186, 2936–2945.[CrossRef]
    [Google Scholar]
  26. Kang, B. R., Cho, B. H., Anderson, A. J. & Kim, Y. C. ( 2004; ). The global regulator GacS of a biocontrol bacterium Pseudomonas chlororaphis O6 regulates transcription from the rpoS gene encoding a stationary-phase sigma factor and affects survival in oxidative stress. Gene 325, 137–143.[CrossRef]
    [Google Scholar]
  27. Kojic, M. & Venturi, V. ( 2001; ). Regulation of rpoS gene expression in Pseudomonas: involvement of a TetR family regulator. J Bacteriol 183, 3712–3720.[CrossRef]
    [Google Scholar]
  28. Kojic, M., Degrassi, G. & Venturi, V. ( 1999; ). Cloning and characterisation of the rpoS gene from plant growth-promoting Pseudomonas putida WCS358: RpoS is not involved in siderophore and homoserine lactone production. Biochim Biophys Acta 1489, 413–420.[CrossRef]
    [Google Scholar]
  29. Kojic, M., Aguilar, C. & Venturi, V. ( 2002; ). TetR family member PsrA directly binds the Pseudomonas rpoS and psrA promoters. J Bacteriol 184, 2324–2330.[CrossRef]
    [Google Scholar]
  30. Kovach, M. E., Elzer, P. H., Hill, D. S., Robertson, G. T., Farris, M. A., Roop, R. M. & Peterson, K. M. ( 1995; ). Four new derivatives of the broad-host-range cloning vector pBBR1MCS, carrying different antibiotic-resistance cassettes. Gene 166, 175–176.[CrossRef]
    [Google Scholar]
  31. Kuiper, I., Bloemberg, G. V., Noreen, S., Thomas-Oates, J. E. & Lugtenberg, B. J. J. ( 2001; ). Increased uptake of putrescine in the rhizosphere inhibits competitive root colonization by Pseudomonas fluorescens strain WCS365. Mol Plant Microbe Interact 14, 1096–1104.[CrossRef]
    [Google Scholar]
  32. Lange, R. & Hengge-Aronis, R. ( 1991; ). Identification of a central regulator of stationary-phase gene expression in Escherichia coli. Mol Microbiol 5, 49–59.[CrossRef]
    [Google Scholar]
  33. Laville, J., Voisard, C., Keel, C., Maurhofer, M., Defago, G. & Haas, D. ( 1992; ). Global control in Pseudomonas fluorescens mediating antibiotic synthesis and suppression of black root rot of tobacco. Proc Natl Acad Sci U S A 89, 1562–1566.[CrossRef]
    [Google Scholar]
  34. Lugtenberg, B. J. J., Chin-A-Woeng, T. F. C. & Bloemberg, G. V. ( 2002; ). Microbe-plant interactions: principles and mechanisms. Antonie Van Leeuwenhoek 81, 373–383.[CrossRef]
    [Google Scholar]
  35. Milton, D. L., Hardman, A., Camara, M., Chhabra, S. R., Bycroft, B. W., Stewart, G. B. & Williams, P. ( 1997; ). Quorum sensing in Vibrio anguillarum: characterization of the vanI/vanR locus and identification of the autoinducer N-(3-oxodecanoyl)-l-homoserine lactone. J Bacteriol 179, 3004–3012.
    [Google Scholar]
  36. Nishikawa, T., Ogawa, K., Kohda, R., Zhixiong, W., Miyasaka, H., Umeda, F., Maeda, I., Kawase, M. & Yagi, K. ( 2002; ). Cloning and molecular analysis of poly(3-hydroxyalkanoate) biosynthesis genes in Pseudomonas aureofaciens. Curr Microbiol 44, 132–135.[CrossRef]
    [Google Scholar]
  37. Pessi, G. & Haas, D. ( 2001; ). Dual control of hydrogen cyanide biosynthesis by the global activator GacA in Pseudomonas aeruginosa PAO1. FEMS Microbiol Lett 200, 73–78.[CrossRef]
    [Google Scholar]
  38. Pierson, L. S., III, Keppenne, V. D. & Wood, D. W. ( 1994; ). Phenazine antibiotic biosynthesis in Pseudomonas aureofaciens 30-84 is regulated by PhzR in response to cell density. J Bacteriol 176, 3966–3974.
    [Google Scholar]
  39. Qi, Q., Rehm, B. H. & Steinbüchel, A. ( 1997; ). Synthesis of poly(3-hydroxyalkanoates) in Escherichia coli expressing the PHA synthase gene phaC2 from Pseudomonas aeruginosa: comparison of PhaC1 and PhaC2. FEMS Microbiol Lett 157, 155–162.[CrossRef]
    [Google Scholar]
  40. Ramos-González, M. I. & Molin, S. ( 1998; ). Cloning, sequencing, and phenotypic characterization of the rpoS gene from Pseudomonas putida KT2440. J Bacteriol 180, 3421–3431.
    [Google Scholar]
  41. Rashid, M. H., Rajanna, C., Ali, A. & Karaolis, D. K. ( 2003; ). Identification of genes involved in the switch between the smooth and rugose phenotypes of Vibrio cholerae. FEMS Microbiol Lett 227, 113–119.[CrossRef]
    [Google Scholar]
  42. Rehm, B. H., Kruger, N. & Steinbuchel, A. ( 1998; ). A new metabolic link between fatty acid de novo synthesis and polyhydroxyalkanoic acid synthesis. The phaG gene from Pseudomonas putida KT2440 encodes a 3-hydroxyacyl-acyl carrier protein-coenzyme A transferase. J Biol Chem 273, 24044–24051.[CrossRef]
    [Google Scholar]
  43. Reimmann, C., Beyeler, M., Latifi, A., Winteler, H., Foglino, M., Lazdunski, A. & Haas, D. ( 1997; ). The global activator GacA of Pseudomonas aeruginosa PAO1 positively controls the production of the autoinducer N-butyryl-homoserine lactone and the formation of the virulence factors pyocyanin, cyanide, and lipase. Mol Microbiol 24, 309–319.[CrossRef]
    [Google Scholar]
  44. Sacherer, P., Defago, G. & Haas, D. ( 1994; ). Extracellular protease and phospholipase C are controlled by the global regulatory gene gacA in the biocontrol strain Pseudomonas fluorescens CHA0. FEMS Microbiol Lett 116, 155–160.[CrossRef]
    [Google Scholar]
  45. Sambrook, J. & Russell, D. ( 2001; ). Molecular Cloning: a Laboratory Manual, 3rd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  46. Sarniguet, A., Kraus, J., Henkels, M. D., Muehlchen, A. M. & Loper, J. E. ( 1995; ). The sigma factor σ S affects antibiotic production and biological control activity of Pseudomonas fluorescens Pf-5. Proc Natl Acad Sci U S A 92, 12255–12259.[CrossRef]
    [Google Scholar]
  47. Schmidt-Eisenlohr, H., Gast, A. & Baron, C. ( 2003; ). Inactivation of gacS does not affect the competitiveness of Pseudomonas chlororaphis in the Arabidopsis thaliana rhizosphere. Appl Environ Microbiol 69, 1817–1826.[CrossRef]
    [Google Scholar]
  48. Schuster, M., Hawkins, A. C., Harwood, C. S. & Greenberg, E. P. ( 2004; ). The Pseudomonas aeruginosa RpoS regulon and its relationship to quorum sensing. Mol Microbiol 51, 973–985.[CrossRef]
    [Google Scholar]
  49. Suh, S. J., Silo-Suh, L., Woods, D. E., Hassett, D. J., West, S. E. & Ohman, D. E. ( 1999; ). Effect of rpoS mutation on the stress response and expression of virulence factors in Pseudomonas aeruginosa. J Bacteriol 181, 3890–3897.
    [Google Scholar]
  50. van Rij, E. T., Wesselink, M., Chin-A-Woeng, T. F. C., Bloemberg, G. V. & Lugtenberg, B. J. J. ( 2004; ). Influence of environmental conditions on the production of phenazine-1-carboxamide by Pseudomonas chlororaphis PCL1391. Mol Plant Microbe Interact 17, 557–566.[CrossRef]
    [Google Scholar]
  51. van Rij, E. T., Girard, G., Lugtenberg, B. J. J. & Bloemberg, G. V. ( 2005; ). Influence of fusaric acid on phenazine-1-carboxamide synthesis and gene expression of Pseudomonas chlororaphis strain PCL1391. Microbiology 151, 2805–2814.[CrossRef]
    [Google Scholar]
  52. Whistler, C. A. & Pierson, L. S., III ( 2003; ). Repression of phenazine antibiotic production in Pseudomonas aureofaciens strain 30-84 by RpeA. J Bacteriol 185, 3718–3725.[CrossRef]
    [Google Scholar]
  53. Whistler, C. A., Corbell, N. A., Sarniguet, A., Ream, W. & Loper, J. E. ( 1998; ). The two-component regulators GacS and GacA influence accumulation of the stationary-phase sigma factor σ S and the stress response in Pseudomonas fluorescens Pf-5. J Bacteriol 180, 6635–6641.
    [Google Scholar]
  54. Whiteley, M., Parsek, M. R. & Greenberg, E. P. ( 2000; ). Regulation of quorum sensing by RpoS in Pseudomonas aeruginosa. J Bacteriol 182, 4356–4360.[CrossRef]
    [Google Scholar]
  55. Wood, D. W. & Pierson, L. S., III ( 1996; ). The phzI gene of Pseudomonas aureofaciens 30-84 is responsible for the production of a diffusible signal required for phenazine antibiotic production. Gene 168, 49–53.[CrossRef]
    [Google Scholar]
  56. Wood, D. W., Gong, F., Daykin, M. M., Williams, P. & Pierson, L. S., III ( 1997; ). N-acyl-homoserine lactone-mediated regulation of phenazine gene expression by Pseudomonas aureofaciens 30-84 in the wheat rhizosphere. J Bacteriol 179, 7663–7670.
    [Google Scholar]
  57. Zuber, S., Carruthers, F., Keel, C. & 8 other authors ( 2003; ). GacS sensor domains pertinent to the regulation of exoproduct formation and to the biocontrol potential of Pseudomonas fluorescens CHA0. Mol Plant Microbe Interact 16, 634–644.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.28284-0
Loading
/content/journal/micro/10.1099/mic.0.28284-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error