Factors triggering type III secretion in Free

Abstract

The type III secretion system of is tightly regulated by various environmental signals, such as low calcium and contact with the host cell. However, the exact signals triggering type III secretion are unknown. The present study describes the finding that secretion of type III effector molecules requires protein factors from serum and L broth, designated type III secretion factors (TSFs), in addition to the low-calcium environment. In the absence of TSF or calcium chelator EGTA, basal levels of type III effector molecules are accumulated intracellularly. Addition of TSF and EGTA together effectively triggers the secretion of pre-existing effector molecules in a short time, even before the active expression of type III genes; thus, active type III gene expression does not seem to be a prerequisite for type III secretion. A search for TSF molecules in serum and L broth resulted in the identification of albumin and casein as the functional TSF molecules. Although there is no clear sequence similarity between albumin and casein, both proteins are known to have a low-affinity, high-capacity calcium-binding property. Tests of well-studied calcium-binding proteins seemed to indicate that low-affinity calcium-binding proteins have TSF activity, although the requirement of low-affinity calcium-binding ability for the TSF activity is not clear. seems to have evolved a sensing mechanism to detect target cells for type III injection through host-derived proteins in combination with a low-calcium signal. Disruption of the bacterial ability to sense low calcium or TSF might be a valid avenue to the effective control of this bacterial pathogen.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.28277-0
2005-11-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/151/11/3575.html?itemId=/content/journal/micro/10.1099/mic.0.28277-0&mimeType=html&fmt=ahah

References

  1. Aballay A., Ausubel F. M. 2002; Caenorhabditis elegans as a host for the study of host–pathogen interactions. Curr Opin Microbiol 5:97–101 [CrossRef]
    [Google Scholar]
  2. Aguanno J. J., Ladenson J. H. 1982; Influence of fatty acids on the binding of calcium to human albumin: correlation of binding and conformation studies and evidence for distinct differences between unsaturated fatty acids and saturated fatty acids. J Biol Chem 257:8745–8748
    [Google Scholar]
  3. Ahn K.-S., Ha U., Jia J., Wu D., Jin S. 2004; The truA gene of Pseudomonas aeruginosa is required for the expression of type III secretory genes. Microbiology 150:539–547 [CrossRef]
    [Google Scholar]
  4. Berchtold M. W. 1993; Evolution of EF-hand calcium-modulated proteins. V. The genes encoding EF-hand proteins are not clustered in mammalian genomes. J Mol Evol 36:489–496 [CrossRef]
    [Google Scholar]
  5. Besarab A., DeGuzman A., Swanson J. W. 1981; Effect of albumin and free calcium concentrations on calcium binding in vitro. J Clin Pathol 34:1361–1367 [CrossRef]
    [Google Scholar]
  6. Bodey G. P., Bolivar R., Fainstein V., Jadeja L. 1983; Infections caused by Pseudomonas aeruginosa . Rev Infect Dis 5:279–313 [CrossRef]
    [Google Scholar]
  7. Borovikov Y. S. 1999; Conformational changes of contractile proteins and their role in muscle contraction. Int Rev Cytol 189:267–301
    [Google Scholar]
  8. Cheng L. W., Schneewind O. 2000; Yersinia enterocolitica TyeA, an intracellular regulator of the type III machinery, is required for specific targeting of YopE, YopH, YopM, and YopN into the cytosol of eukaryotic cells. J Bacteriol 182:3183–3190 [CrossRef]
    [Google Scholar]
  9. Coburn J., Gill D. M. 1991; ADP-ribosylation of p21 ras and related proteins by Pseudomonas aeruginosa exoenzyme S. Infect Immun 59:4259–4262
    [Google Scholar]
  10. Curry S., Brick P., Franks N. P. 1999; Fatty acid binding to human serum albumin: new insights from crystallographic studies. Biochim Biophys Acta 1441131–140 [CrossRef]
    [Google Scholar]
  11. Dacheux D., Epaulard O., de Groot A., Guery B., Leberre R., Attree I., Polack B., Toussaint B. 2002; Activation of the Pseudomonas aeruginosa type III secretion system requires an intact pyruvate dehydrogenase aceAB operon. Infect Immun 70:3973–3977 [CrossRef]
    [Google Scholar]
  12. D'Argenio D. A., Gallagher L. A., Berg C. A., Manoil C. 2001; Drosophila as a model host for Pseudomonas aeruginosa infection. J Bacteriol 183:1466–1471 [CrossRef]
    [Google Scholar]
  13. Davis B. D., Mingioli E. S. 1950; Mutants of Escherichia coli requiring methionine or vitamin B12. J Bacteriol 60:17–28
    [Google Scholar]
  14. Day J. B., Plano G. V. 1998; A complex composed of SycN and YscB functions as a specific chaperone for YopN in Yersinia pestis . Mol Microbiol 30:777–788 [CrossRef]
    [Google Scholar]
  15. Deretic V., Schurr M. J., Yu H. 1995; Pseudomonas aeruginosa , mucoidy and the chronic infection phenotype in cystic fibrosis. Trends Microbiol 3:351–356 [CrossRef]
    [Google Scholar]
  16. Farah C. S., Reinach F. C. 1995; The troponin complex and regulation of muscle contraction. FASEB J 9:755–767
    [Google Scholar]
  17. Farrell H. M. Jr, Kumosinski T. F., Malin E. L., Brown E. M. 2002; The caseins of milk as calcium-binding proteins. Methods Mol Biol 172:97–140
    [Google Scholar]
  18. Finck-Barbancon V., Goranson J., Zhu L., Sawa T., Wiener-Kronish J. P., Fleiszig S. M., Wu C., Mende-Mueller L., Frank D. W. 1997; ExoU expression by Pseudomonas aeruginosa correlates with acute cytotoxicity and epithelial injury. Mol Microbiol 25:547–557 [CrossRef]
    [Google Scholar]
  19. Fogh-Andersen N. 1977; Albumin/calcium association at different pH, as determined by potentiometry. Clin Chem 23:2122–2126
    [Google Scholar]
  20. Forsberg Å., Viitanen A. M., Skurnik M., Wolf-Watz H. 1991; The surface-located YopN protein is involved in calcium signal transduction in Yersinia pseudotuberculosis . Mol Microbiol 5:977–986 [CrossRef]
    [Google Scholar]
  21. Frank D. W. 1997; The exoenzyme S regulon of Pseudomonas aeruginosa . Mol Microbiol 26:621–629 [CrossRef]
    [Google Scholar]
  22. Frank D. W., Nair G., Schweizer H. P. 1994; Construction and characterization of chromosomal insertional mutations of the Pseudomonas aeruginosa exoenzyme S trans -regulatory locus. Infect Immun 62:554–563
    [Google Scholar]
  23. Frithz-Lindsten E., Du Y., Rosqvist R., Forsberg . 1997; Intracellular targeting of exoenzyme S of Pseudomonas aeruginosa via type III-dependent translocation induces phagocytosis resistance, cytotoxicity and disruption of actin microfilaments. Mol Microbiol 25:1125–1139 [CrossRef]
    [Google Scholar]
  24. Frithz-Lindsten E., Holmström A., Jacobsson L., Soltani M., Olsson J., Rosqvist R, Forsberg . 1998; Functional conservation of the effector protein translocators PopB/YopB and PopD/YopD of Pseudomonas aeruginosa and Yersinia pseudotuberculosis . Mol Microbiol 29:1155–1165 [CrossRef]
    [Google Scholar]
  25. Ganesan A. K., Frank D. W., Misra R. P., Schmidt G., Barbieri J. T. 1998; Pseudomonas aeruginosa exoenzyme S ADP-ribosylates Ras at multiple sites. J Biol Chem 273:7332–7337 [CrossRef]
    [Google Scholar]
  26. Ha U., Jin S. 2001; Growth phase-dependent invasion of Pseudomonas aeruginosa and its survival within HeLa cells. Infect Immun 69:4398–4406 [CrossRef]
    [Google Scholar]
  27. Ha U.-H., Kim J., Badrane H., Jia J., Baker H. V., Wu D., Jin S. 2004; An in vivo inducible gene of Pseudomonas aeruginosa encodes an anti-ExsA to suppress the type III secretion system. Mol Microbiol 54:307–320 [CrossRef]
    [Google Scholar]
  28. Hauser A. R., Kang P. J., Engel J. N. 1998; PepA, a secreted protein of Pseudomonas aeruginosa , is necessary for cytotoxicity and virulence. Mol Microbiol 27:807–818 [CrossRef]
    [Google Scholar]
  29. Heizmann C. W., Berchtold M. W. 1987; Expression of parvalbumin and other Ca2+-binding proteins in normal and tumor cells: a topical review. Cell Calcium 8:1–41 [CrossRef]
    [Google Scholar]
  30. Hogardt M., Roeder M., Schreff A. M., Eberl L., Heesemann J. 2004; Expression of Pseudomonas aeruginosa exoS is controlled by quorum sensing and RpoS. Microbiology 150:843–851 [CrossRef]
    [Google Scholar]
  31. Holder I. A. 1993; Pseudomonas aeruginosa virulence associated factors and their role in burn wound infections. In Pseudomonas aeruginosa, the Opportunist: Pathogenesis and Disease pp. 235–245 Edited by Fick R. B. Jr Boca Raton, FL: CRC Press;
    [Google Scholar]
  32. Hovey A. K., Frank D. W. 1995; Analyses of the DNA-binding and transcriptional activation properties of ExsA, the transcriptional activator of the Pseudomonas aeruginosa exoenzyme S regulon. J Bacteriol 177:4427–4436
    [Google Scholar]
  33. Hueck C. J. 1998; Type III protein secretion systems in bacterial pathogens of animals and plants. Microbiol Mol Biol Rev 62:379–433
    [Google Scholar]
  34. Jia J., Alaoui-El-Azher M., Chow M., Chambers T. C., Baker H., Jin S. 2003; c-Jun NH2-terminal kinase-mediated signaling is essential for Pseudomonas aeruginosa ExoS-induced apoptosis. Infect Immun 71:3361–3370 [CrossRef]
    [Google Scholar]
  35. Kaufman M. R., Jia J., Zeng L., Ha U., Chow M., Jin S. 2000; Pseudomonas aeruginosa mediated apoptosis requires the ADP-ribosylating activity of ExoS. Microbiology 146:2531–2541
    [Google Scholar]
  36. Kragh-Hansen U., Vorum H. 1993; Quantitative analyses of the interaction between calcium ions and human serum albumin. Clin Chem 39:202–208
    [Google Scholar]
  37. Lee V. T., Mazmanian S. K., Schneewind O. 2001; A program of Yersinia enterocolitica type III secretion reactions is activated by specific signals. J Bacteriol 183:4970–4978 [CrossRef]
    [Google Scholar]
  38. Lory S., Strom M. S. 1997; Structure-function relationship of type-IV prepilin peptidase of Pseudomonas aeruginosa – a review. Gene 192:117–121 [CrossRef]
    [Google Scholar]
  39. Matson J. S., Nilles M. L. 2001; LcrG-LcrV interaction is required for control of Yops secretion in Yersinia pestis . J Bacteriol 183:5082–5091 [CrossRef]
    [Google Scholar]
  40. McCaw M. L., Lykken G. L., Singh P. K., Yahr T. L. 2002; ExsD is a negative regulator of the Pseudomonas aeruginosa type III secretion regulon. Mol Microbiol 46:1123–1133 [CrossRef]
    [Google Scholar]
  41. Ménard R., Sansonetti P., Parsot C. 1994; The secretion of the Shigella flexneri Ipa invasins is activated by epithelial cells and controlled by IpaB and IpaD. EMBO J 13:5293–5302
    [Google Scholar]
  42. Miller J. H. 1972 Experiments in Molecular Genetics Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  43. Muller S., Feldman M. F., Cornelis G. R. 2001; The type III secretion system of Gram-negative bacteria: a potential therapeutic target?. Expert Opin Ther Targets 5:327–339 [CrossRef]
    [Google Scholar]
  44. Nilles M. L., Williams A. W., Skrzypek E., Straley S. C. 1997; Yersinia pestis LcrV forms a stable complex with LcrG and may have a secretion-related regulatory role in the low-Ca2+ response. J Bacteriol 179:1307–1316
    [Google Scholar]
  45. Pederson K. J., Vallis A. J., Aktories K., Frank D. W., Barbieri J. T. 1999; The amino-terminal domain of Pseudomonas aeruginosa ExoS disrupts actin filaments via small-molecular-weight GTP-binding proteins. Mol Microbiol 32:393–401 [CrossRef]
    [Google Scholar]
  46. Persechini A., Moncrief N. D., Kretsinger R. H. 1989; The EF-hand family of calcium-modulated proteins. Trends Neurosci 12:462–467 [CrossRef]
    [Google Scholar]
  47. Pettersson J., Nordfelth R., Dubinina E., Bergman T., Gustafsson M., Magnusson K. E., Wolf-Watz H. 1996; Modulation of virulence factor expression by pathogen target cell contact. Science 273:1231–1233 [CrossRef]
    [Google Scholar]
  48. Pier G. B. 2002; CFTR mutations and host susceptibility to Pseudomonas aeruginosa lung infection. Curr Opin Microbiol 5:81–86 [CrossRef]
    [Google Scholar]
  49. Rahme L. G., Stevens E. J., Wolfort S. F., Shao J., Tompkins R. G., Ausubel F. M. 1995; Common virulence factors for bacterial pathogenicity in plants and animals. Science 268:1899–1902 [CrossRef]
    [Google Scholar]
  50. Ramphal R., Koo L., Ishimoto K. S., Totten P. A., Lara J. C., Lory S. 1991; Adhesion of Pseudomonas aeruginosa pilin-deficient mutants to mucin. Infect Immun 59:1307–1311
    [Google Scholar]
  51. Rietsch A., Wolfgang M. C., Mekalanos J. J. 2004; Effect of metabolic imbalance on expression of type III secretion genes in Pseudomonas aeruginosa . Infect Immun 72:1383–1390 [CrossRef]
    [Google Scholar]
  52. Rosqvist R., Magnusson K.-E., Wolf-Watz H. 1994; Target cell contact triggers expression and polarized transfer of Yersinia YopE cytotoxin into mammalian cells. EMBO J 13:964–972
    [Google Scholar]
  53. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning: a Laboratory Manual , 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  54. Sato H., Feix J. B., Hillard C. J., Frank D. W. 2005; Characterization of phospholipase activity of the Pseudomonas aeruginosa type III cytotoxin. ExoU. J Bacteriol 187:1192–1195 [CrossRef]
    [Google Scholar]
  55. Sawa T., Yahr T. L., Ohara M., Kurahashi K., Gropper M. A., Wiener-Kronish J. P., Frank D. W. 1999; Active and passive immunization with the Pseudomonas V antigen protects against type III intoxication and lung injury. Nat Med 5:392–398 [CrossRef]
    [Google Scholar]
  56. Schweizer H. P. 1991; Escherichia - Pseudomonas shuttle vectors derived from pUC18/19. Gene 97:109–121 [CrossRef]
    [Google Scholar]
  57. Swaisgood H. E. 1993; Review and update of casein chemistry. J Dairy Sci 76:3054–3061 [CrossRef]
    [Google Scholar]
  58. Totten P. A., Lory S. 1990; Characterization of the type a flagellin gene from Pseudomonas aeruginosa PAK. J Bacteriol 172:7188–7199
    [Google Scholar]
  59. Vallis A. J., Yahr T. L., Barbieri J. T., Frank D. W. 1999; Regulation of ExoS production and secretion by Pseudomonas aeruginosa in response to tissue culture conditions. Infect Immun 67:914–920
    [Google Scholar]
  60. Vasil M. L., Ochsner U. A. 1999; The response of Pseudomonas aeruginosa to iron: genetics, biochemistry and virulence. Mol Microbiol 34:399–413 [CrossRef]
    [Google Scholar]
  61. Vogel H. J. 2002 Calcium-binding Protein Protocols (Methods in Molecular Biology no 173 pp 172–173 Totowa, NJ: Humana Press;
    [Google Scholar]
  62. Vorum H., Fisker K., Otagiri M., Pedersen A. O., Kragh-Hansen U. 1995; Calcium ion binding to clinically relevant chemical modifications of human serum albumin. Clin Chem 41:1654–1661
    [Google Scholar]
  63. Wolfgang M. C., Lee V. T., Gilmore M. E., Lory S. 2003; Coordinate regulation of bacterial virulence genes by a novel adenylate cyclase-dependent signaling pathway. Dev Cell 4:253–263 [CrossRef]
    [Google Scholar]
  64. Yahr T. L., Frank D. W. 1994; Transcriptional organization of the trans -regulatory locus which controls exoenzyme S synthesis in Pseudomonas aeruginosa . J Bacteriol 176:3832–3838
    [Google Scholar]
  65. Yahr T. L., Hovey A. K., Kulich S. M., Frank D. W. 1995; Transcriptional analysis of the Pseudomonas aeruginosa exoenzyme S structural gene. J Bacteriol 177:1169–1178
    [Google Scholar]
  66. Yahr T. L., Goranson J., Frank D. W. 1996; Exoenzyme S of Pseudomonas aeruginosa is secreted by a type III pathway. Mol Microbiol 22:991–1003 [CrossRef]
    [Google Scholar]
  67. Yahr T. L., Vallis A. J., Hancock M. K., Barbieri J. T., Frank D. W. 1998; ExoY, an adenylate cyclase secreted by the Pseudomonas aeruginosa type III system. Proc Natl Acad Sci U S A 95:13899–13904 [CrossRef]
    [Google Scholar]
  68. Zaborina O., Li X., Cheng G., Kapatral V., Chakrabarty A. M. 1999a; Secretion of ATP-utilizing enzymes, nucleoside diphosphate kinase and ATPase, by Mycobacterium bovis BCG: sequestration of ATP from macrophage P2Z receptors?. Mol Microbiol 31:1333–1343 [CrossRef]
    [Google Scholar]
  69. Zaborina O., Misra N., Kostal J., Kamath S., Kapatral V., El-Idrissi M. E.-A., Prabhakar B. S., Chakrabarty A. M. 1999b; P2Z-independent and P2Z receptor-mediated macrophage killing by Pseudomonas aeruginosa isolated from cystic fibrosis patients. Infect Immun 67:5231–5242
    [Google Scholar]
  70. Zhang Z., Jin J.-P., Root D. D. 2004; Binding of calcium ions to an avian flight muscle troponin T. Biochemistry 43:2645–2655 [CrossRef]
    [Google Scholar]
  71. Zierler M. K., Galán J. E. 1995; Contact with cultured epithelial cells stimulates secretion of Salmonella typhimurium invasion protein InvJ. Infect Immun 63:4024–4028
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.28277-0
Loading
/content/journal/micro/10.1099/mic.0.28277-0
Loading

Data & Media loading...

Most cited Most Cited RSS feed