1887

Abstract

Experiments were done to define the nature of the xylan-derived induction signal for xylanase activity, and evaluate which xylanase genes among the three known ones (, and ) are induced by the presence of xylan in B4. During the later stages of exponential growth on glucose, addition of 0·05 % water-soluble xylan (WS-X) stimulated xylanase formation within 30 min. Xylose, xylobiose, xylotriose, xylotetraose, xylopentaose, arabinose and glucuronic acid all failed to induce the xylanase activity. An acid-ethanol-soluble fraction of WS-X (approximate degree of polymerization 30) enhanced the activity significantly, whereas the acid-ethanol-insoluble fraction had no effect, unless first digested by the cloned XynC xylanase. These results indicate that medium- to large-sized xylo-oligosaccharides are responsible for induction. The transcription of all three known xylanase genes from was upregulated coordinately by addition of WS-X. There have been relatively few investigations into the regulation of xylanase activity in bacteria, and it appears to be unique that medium- to large-sized xylo-oligosaccharides are responsible for induction.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.28270-0
2005-12-01
2019-11-16
Loading full text...

Full text loading...

/deliver/fulltext/micro/151/12/4121.html?itemId=/content/journal/micro/10.1099/mic.0.28270-0&mimeType=html&fmt=ahah

References

  1. Biely, P., Kratky, Z., Vrsanska, M. & Urmanicova, D. ( 1980; ). Induction and inducers of endo 1,4- beta-xylanase in the yeast Cryptococcus albidus. Eur J Biochem 108, 323–329.[CrossRef]
    [Google Scholar]
  2. Cotta, M. A. ( 1993; ). Utilization of xylooligosaccharides by selected ruminal bacteria. Appl Environ Microbiol 59, 3557–3563.
    [Google Scholar]
  3. Cotta, M. A., Wheeler, M. B. & Whitehead, T. R. ( 1994; ). Cyclic AMP in ruminal and other anaerobic bacteria. FEMS Microbiol Lett 124, 355–360.[CrossRef]
    [Google Scholar]
  4. Fields, M. W. & Russell, J. B. ( 2001; ). The glucomannokinase of Prevotella bryantii B14 and its potential role in regulating β-glucanase expression. Microbiology 147, 1035–1043.
    [Google Scholar]
  5. Flint, H. J., McPherson, C. A. & Martin, J. C. ( 1991; ). Expression of two xylanase genes from the rumen cellulolytic bacterium Ruminococcus flavefaciens 17 cloned in pUC13. J Gen Microbiol 137, 123–129.[CrossRef]
    [Google Scholar]
  6. Flint, H. J., Whitehead, T. R., Martin, J. C. & Gasparic, A. ( 1997; ). Interrupted catalytic domain structures in xylanases from two distantly related strains of Prevotella ruminicola. Biochem Biophys Acta 1337, 161–165.
    [Google Scholar]
  7. Flint, H. J., Aurilia, V., Kirby, J., Miyazaki, K., Rincon-Torres, M. T., McCrae, S. I. & Martin, J. C. ( 1998; ). Organization of plant cell wall degrading enzymes in the ruminal anaerobic bacteria Ruminococcus flavefaciens and Prevotella bryantii. In Genetics, Biochemistry and Ecology of Cellulose Degradation, pp. 511–520. Edited by K. Ohmiya, K. Hayashi, K. Sakka, Y. Kobayashi, S. Karita & T. Kimura. Tokyo: Uni Publishers.
  8. Garcia-Campayo, V., McCrae, V., Zhang, J.-X., Flint, H. J. & Wood, T. M. ( 1993; ). Mode of action, kinetic properties and physicochemical characterisation of two different domains of a bifunctional (1-4)-β-d-xylanase from Ruminococcus flavefaciens expressed separately in Escherichia coli. Biochem J 269, 235–243.
    [Google Scholar]
  9. Gardner, R. G., Wells, J. E., Russell, J. B. & Wilson, D. B. ( 1995; ). The cellular location of the Prevotella ruminicola β-1,4-d-endoglucanase and its occurrence in other strains of ruminal bacteria. Appl Environ Microbiol 61, 3288–3292.
    [Google Scholar]
  10. Gasparic, A., Martin, J. C., Daniel, A. S. & Flint, H. J. ( 1995; ). A xylan hydrolase gene cluster in Prevotella ruminicola B14: sequence relationships, synergistic interactions, and oxygen sensitivity of a novel enzyme with exoxylanase and β-(1,4)-xylosidase activities. Appl Environ Microbiol 61, 2958–2964.
    [Google Scholar]
  11. Gouka, R. J., Hessing, J. G., Punt, P. J., Stam, H., Musters, W. & Van den Hondel, C. A. ( 1996; ). An expression system based on the promoter region of the Aspergillus awamori 1,4-beta-endoxylanase A gene. Appl Microbiol Biotechnol 46, 28–35.[CrossRef]
    [Google Scholar]
  12. Henkin, T. M. ( 1996; ). The role of the CcpA transcriptional regulator in carbon metabolism in Bacillus subtilis. FEMS Microbiol Lett 135, 9–15.[CrossRef]
    [Google Scholar]
  13. Heuck, C. J., Kraus, A., Schmiedel, D. & Hillen, W. ( 1995; ). Cloning, expression and functional analyses of the catabolite control protein CcpA from Bacillus megaterium. Mol Microbiol 16, 855–864.[CrossRef]
    [Google Scholar]
  14. Kristensen, H. H., Valentin-Hansen, P. & Sogaard-Andersen, L. ( 1997; ). Design of CytR regulated, cAMP-CRP dependent class II promoters in Escherichia coli: RNA polymerase-promoter interactions modulate the efficiency of CytR repression. J Mol Biol 266, 866–876.[CrossRef]
    [Google Scholar]
  15. Mach, R. L., Strauss, J., Zeilinger, S., Schindler, M. C. & Kubicek, P. ( 1996; ). Carbon catabolite repression of xylanase I (xyn1) gene expression in Trichoderma reesei. Mol Microbiol 21, 1273–1281.[CrossRef]
    [Google Scholar]
  16. Martin, S. A. & Russell, J. B. ( 1986; ). Phosphoenolpyruvate-dependent phosphorylation of hexoses by rumen bacteria: evidence for the phosphotransferase system of transport. Appl Environ Microbiol 52, 1348–1352.
    [Google Scholar]
  17. Miyazaki, K., Martin, J. C., Marinsek-Logar, R. & Flint, H. J. ( 1997; ). Degradation and utilization of xylans by the rumen anaerobe Prevotella bryantii B14. Anaerobe 3, 373–381.[CrossRef]
    [Google Scholar]
  18. Miyazaki, K., Miyamoto, H., Mercer, D. K., Hirase, T., Martin, J. C., Kojima, Y. & Flint, H. J. ( 2003; ). Involvement of the two component regulatory protein XynR in positive control of xylanase gene expression in the ruminal anaerobe Prevotella bryantii B14. J Bacteriol 185, 2219–2226.[CrossRef]
    [Google Scholar]
  19. Monedero, V., Gosalbes, M. J. & Perez-Martinez, G. ( 1997; ). Catabolite repression in Lactobacillus casei ATCC 393 is mediated by CcpA. J Bacteriol 179, 6657–6664.
    [Google Scholar]
  20. Nelson, N. ( 1944; ). A photometric adaptation of the Somogyi method for the determination of glucose. J Biol Chem 153, 375–380.
    [Google Scholar]
  21. Orejas, M., MacCabe, A. P., Perez Gonzalez, J. A., Kumar, S. & Ramon, D. ( 1999; ). Carbon catabolite repression of the Aspergillus nidulans xlnA gene. Mol Microbiol 31, 177–184.[CrossRef]
    [Google Scholar]
  22. Pedersen, H., Dall, J., Dandanell, G. & Valentin-Hansen, P. ( 1995; ). Gene-regulatory modules in Escherichia coli: nucleoprotein complexes formed by cAMP-CRP and CytR at the nupG promoter. Mol Microbiol 17, 843–853.[CrossRef]
    [Google Scholar]
  23. Postma, P. W., Lengeler, J. W. & Jacobson, G. R. ( 1993; ). Phosphoenol-pyruvate : carbohydrate phosphotransferase systems of bacteria. Microbiol Rev 57, 543–594.
    [Google Scholar]
  24. Schneider, W. C. ( 1957; ). Determination of nucleic acids in tissues by pentose analysis. Methods Enzymol 3, 680–684.
    [Google Scholar]
  25. Zeilinger, S., Mach, R. L., Schindler, M., Herzog, P. & Kubicek, C. P. ( 1996; ). Different inducibility of expression of the two xylanase genes xyn1 and xyn2 in Trichoderma reesei. J Biol Chem 271, 25624–25629.[CrossRef]
    [Google Scholar]
  26. Zhang, J.-X. & Flint, H. J. ( 1992; ). A bifunctional xylanase encoded by the xynA gene of the rumen cellulolytic bacterium Ruminococcus flavefaciens 17 comprises two dissimilar domains linked by an asparagine/glutamine rich sequence. Mol Microbiol 6, 1013–1023.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.28270-0
Loading
/content/journal/micro/10.1099/mic.0.28270-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error