1887

Abstract

A triglyceride lipase gene was identified in the genome of strain PH-1. The predicted protein encoded by contains 591 amino acid residues with a putative N-terminal signal peptide and shows 57 and 40–44 % identity to a lipase and five lipases, respectively. Yeast cells overexpressing LIP1 showed lipolytic activity against a broad range of triglyceride substrates. Northern blot analyses revealed that expression of was activated during the fungal infection process. expression was strongly induced in minimal medium supplemented with wheatgerm oil, but only weakly induced by olive oil and triolein. In contrast, supplementation with other carbon sources, including glucose, sucrose, apple pectin and wheat cell-wall material, did not induce expression. Saturated fatty acids were the strongest inducers for expression and this induction was suppressed proportionally by the presence of the unsaturated fatty acid. To determine the potential function of , gene replacement was conducted on strain PH-1. When compared with wild-type PH-1, Δ mutants showed greatly reduced lipolytic activities at the early stage of incubation on minimal medium supplemented with either saturated or unsaturated lipid as the substrate, indicating that encodes a secreted lipase for exogenous lipid hydrolysis. Moreover, the Δ mutants exhibited growth deficiency on both liquid and solid minimal media supplemented with the saturated triglyceride tristearin as the sole carbon source, suggesting that is required for utilization of this substance. Despite these differences, no variation in disease symptoms between the Δ mutants and the wild-type strain was observed on susceptible cereal hosts.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.28261-0
2005-12-01
2020-04-08
Loading full text...

Full text loading...

/deliver/fulltext/micro/151/12/3911.html?itemId=/content/journal/micro/10.1099/mic.0.28261-0&mimeType=html&fmt=ahah

References

  1. Choi J. Y., Stukey J., Hwang S. Y., Martin C. E. 1996; Regulatory elements that control transcription activation and unsaturated fatty acid-mediated repression of the Saccharomyces cerevisiae OLE1 gene. J Biol Chem271:3581–3589[CrossRef]
    [Google Scholar]
  2. Comménil P., Belingheri L., Sancholle M., Dehorter B. 1995; Purification and properties of an extracellular lipase from the fungus Botrytis cinerea . Lipids30:351–356[CrossRef]
    [Google Scholar]
  3. Comménil P., Belingheri L., Dehorter B. 1998; Antilipase antibodies prevent infection of tomato leaves by Botrytis cinerea . Physiol Mol Plant Pathol52:1–14[CrossRef]
    [Google Scholar]
  4. Comménil P., Belingheri L., Bauw G., Dehorter B. 1999; Molecular characterization of a lipase induced in Botrytis cinerea by components of grape berry cuticle. Physiol Mol Plant Pathol55:37–43[CrossRef]
    [Google Scholar]
  5. Cousin X., Hotelier T., Giles K., Toutant J. P., Chatonnet A. 1998; aCHEdb: the database system for esther, the α / β fold family of protein and the cholinesterase gene server. Nucleic Acids Res26:226–228[CrossRef]
    [Google Scholar]
  6. Crowhurst R. N., Binnie S. J., Bowen J. K., Hawthorne B. T., Plummer K. M., Rees-George J., Rikkerink E. H. A., Templeton M. D. 1997; Effect of disruption of a cutinase gene ( cutA ) on virulence and tissue specificity of Fusarium solani f.sp. cucurbitae race 2 toward Cucurbita maxima and C. moschata . Mol Plant Microbe Interact10:355–368[CrossRef]
    [Google Scholar]
  7. Deising H., Nicholson R. L., Haug M., Howard R. J., Mendgen K. 1992; Adhesion pad formation and the involvement of cutinase and esterases in the attachment of uredospores to the host cuticle. Plant Cell4:1101–1111[CrossRef]
    [Google Scholar]
  8. de Vries R. P., Michelsen B., Poulsen C. H., Kroon P. A., van den Heuvel R. H., Faulds C. B., Williamson G., Visser J, van den Hombergh J. P.. 1997; The faeA genes from Aspergillus niger and Aspergillus tubingensis encode ferulic acid esterases involved in degradation of complex cell wall polysaccharides. Appl Environ Microbiol63:4638–4644
    [Google Scholar]
  9. de Vries R. P., vanKuyk P. A., Kester H. C., Visser J. 2002; The Aspergillus niger faeB gene encodes a second feruloyl esterase involved in pectin and xylan degradation and is specifically induced in the presence of aromatic compounds. Biochem J363:377–386[CrossRef]
    [Google Scholar]
  10. Doss R. P. 1999; Composition and enzymatic activity of the extracellular matrix secreted by germlings of Botrytis cinerea . Appl Environ Microbiol65:404–408
    [Google Scholar]
  11. Duplus E., Glorian M., Forest C. 2000; Fatty acid regulation of gene transcription. J Biol Chem275:30749–30752[CrossRef]
    [Google Scholar]
  12. Gilbert J., Tekauz A. 2000; Recent developments in research on Fusarium head blight of wheat in Canada. Can J Plant Pathol22:1–8[CrossRef]
    [Google Scholar]
  13. Groth J. V., Ozmon E. A., Busch R. H. 1999; Repeatability and relationship of incidence and severity measures of scab of wheat caused by Fusarium graminearum in inoculated nurseries. Plant Dis83:1033–1038[CrossRef]
    [Google Scholar]
  14. Hohn T. M., Desjardins A. E. 1992; Isolation and gene disruption of the Tox5 gene encoding trichodiene synthase in Gibberella pulicaris . Mol Plant Microbe Interact5:249–256[CrossRef]
    [Google Scholar]
  15. Jaeger K. E., Reetz M. T. 1998; Microbial lipases form versatile tools for biotechnology. Trends Biotechnol16:396–403[CrossRef]
    [Google Scholar]
  16. Jaeger K. E., Ransac S., Dijkstra B. W., Colson C., van Heuvel M., Misset O. 1994; Bacterial lipases. FEMS Microbiol Rev15:29–63[CrossRef]
    [Google Scholar]
  17. Jenczmionka N. J., Maier F. J., Lösch A. P., Schäfer W. 2003; Mating, conidiation and pathogenicity of Fusarium graminearum , the main causal agent of the head-blight disease of wheat, are regulated by the MAP kinase gpmk1. Curr Genet43:87–95
    [Google Scholar]
  18. Juniper B. E., Jeffree C. E. 1983; Plant Surfaces London: Edward Arnold;
    [Google Scholar]
  19. Knogge W. 1996; Fungal infection of plants. Plant Cell8:1711–1722[CrossRef]
    [Google Scholar]
  20. Kolattukudy P. E. 1985; Enzymatic penetration of the plant cuticle by fungal pathogens. Annu Rev Phytopathol23:223–250[CrossRef]
    [Google Scholar]
  21. Kouker G., Jaeger K. 1987; Specific and sensitive plate assay for bacterial lipases. Appl Environ Microbiol53:211–213
    [Google Scholar]
  22. Kyte J., Doolittle R. F. 1982; A simple method for displaying the hydropathic character of a protein. J Mol Biol157:105–132[CrossRef]
    [Google Scholar]
  23. Lehtinen U. 1993; Plant cell wall degrading enzymes of Septoria nodorum . Physiol Mol Plant Pathol43:121–134[CrossRef]
    [Google Scholar]
  24. Longhi S., Fusetti F., Grandori R., Lotti M., Vanoni M., Alberghina L. 1992; Cloning and nucleotide sequences of two lipase genes from Candida cylindracea . Biochim Biophys Acta 1131;227–232[CrossRef]
    [Google Scholar]
  25. Lotti M., Grandori R., Fusetti F., Longhi S., Brocca S., Tramontano A., Alberghina L. 1993; Cloning and analysis of Candida cylindracea lipase sequences. Gene124:45–55[CrossRef]
    [Google Scholar]
  26. McDonough V. M., Stukey J. E., Martin C. E. 1992; Specificity of unsaturated fatty acid-regulated expression of the Saccharomyces cerevisiae OLE1 gene. J Biol Chem267:5931–5936
    [Google Scholar]
  27. McMullen M., Jones R., Gallenberg D. 1997; Scab of wheat and barley: a re-emerging disease of devastating impact. Plant Dis81:1340–1348[CrossRef]
    [Google Scholar]
  28. Nasser Eddine A., Hannemann F., Schäfer W. 2001; Cloning and expression analysis of NhL1 , a gene encoding an extracellular lipase from the fungal pea pathogen Nectria haematococca MP VI ( Fusarium solani f. sp. pisi) that is expressed in planta . Mol Genet Genomics265:215–224[CrossRef]
    [Google Scholar]
  29. Oliver R., Osbourn A. 1995; Molecular dissection of fungal phytopathogenicity. Microbiology141:1–9[CrossRef]
    [Google Scholar]
  30. Page R. D. M. 1996; TreeView: an application to display phylogenetic trees on personal computers. Comput Appl Biosci12:357–358
    [Google Scholar]
  31. Pain N. A., Green J. R., Jones G. L., O'Connell R. J. 1996; Composition and organisation of extracellular matrices around germ tubes and appressoria of Colletotrichum lindemuthianum . Protoplasma190:119–130[CrossRef]
    [Google Scholar]
  32. Pandey A., Benjamin S., Soccol C. R., Nigam P., Krieger N., Soccol V. T. 1999; The realm of microbial lipases in biotechnology. Biotechnol Appl Biochem29:119–131
    [Google Scholar]
  33. Rapp P., Backhaus S. 1992; Formation of extracellular lipases by filamentous fungi, yeasts and bacteria. Enzyme Microb Technol14:938–943[CrossRef]
    [Google Scholar]
  34. Reis H., Pfiffi S., Hahn M. 2005; Molecular and functional characterization of a secreted lipase from Botrytis cinerea . Mol Plant Pathol6:257–267[CrossRef]
    [Google Scholar]
  35. Rikkerink E. H. A., Solon S. L., Crowhurst R. N., Templeton M. D. 1994; Integration of vectors by homologous recombination in the plant pathogen Glomerella cingulata . Curr Genet25:202–208[CrossRef]
    [Google Scholar]
  36. Roberts D. R., Mims C. W. 1998; Ultrastructure of extracellular matrix deposits associated with conidia of the powdery mildew fungus Blumeria graminis f.sp. hordei . Int J Plant Sci159:575–580[CrossRef]
    [Google Scholar]
  37. Sambrook J., Russell D. W. 2001; Molecular Cloning: a Laboratory Manual , 3rd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  38. Schisler D. A., Khan N. I., Boehm M. J., Slininger P. J. 2002; Greenhouse and field evaluation of biological control of Fusarium head blight on durum wheat. Plant Dis86:1350–1356[CrossRef]
    [Google Scholar]
  39. Schmidt-Dannert C. 1999; Recombinant microbial lipases for biotechnological applications. Bioorg Med Chem7:2123–2130[CrossRef]
    [Google Scholar]
  40. Schmidt-Dannert C., Pleiss J., Schmid R. D. 1998; A toolbox of recombinant lipases for industrial applications. Ann N Y Acad Sci864:14–22[CrossRef]
    [Google Scholar]
  41. Schrag J. D., Li Y., Wu S., Cygler M. 1991; Ser-His-Glu triad forms the catalytic site of the lipase from Geotrichum candidum . Nature351:761–764[CrossRef]
    [Google Scholar]
  42. Seong K., Hou Z., Tracy M., Kistler H. C., Xu J. R. 2005; Random insertional mutagenesis identifies genes associated with virulence in the wheat scab fungus Fusarium graminearum . Phytopathology95:744–750[CrossRef]
    [Google Scholar]
  43. Shimada Y., Sugihara A., Iizumi T., Tominaga Y. 1990; cDNA cloning and characterization of Geotrichum candidum lipase II. J Biochem107:703–707
    [Google Scholar]
  44. Stahl D. J., Schäfer W. 1992; Cutinase is not required for fungal pathogenicity on pea. Plant Cell4:621–629[CrossRef]
    [Google Scholar]
  45. Sweigard J. A., Chumley F. G., Valent B. 1992; Disruption of a Magnaporthe grisea cutinase gene. Mol Gen Genet232:183–190
    [Google Scholar]
  46. Thomas S. W., Rasmussen S. W., Glaring M. A., Rouster J. A., Christiansen S. K., Oliver R. P. 2001; Gene identification in the obligate fungal pathogen Blumeria graminis by expressed sequence tag analysis. Fungal Genet Biol33:195–211[CrossRef]
    [Google Scholar]
  47. Thomas S. W., Glaring M. A., Rasmussen S. W., Kinane J. T., Oliver R. P. 2002; Transcript profiling in the barley mildew pathogen Blumeria graminis by serial analysis of gene expression (SAGE. Mol Plant Microbe Interact15:847–856[CrossRef]
    [Google Scholar]
  48. van Kan J. A. L., van't Klooster J. W., Wagemakers C. A. M., Dees D. C. T., van der Vlugt-Bergmans C. J. B. 1997; Cutinase A of Botrytis cinerea is expressed, but not essential, during penetration of gerbera and tomato. Mol Plant Microbe Interact10:30–38[CrossRef]
    [Google Scholar]
  49. Verger R. 1997; ‘Interfacial activation’ of lipases: facts and artifacts. Trends Biotechnol15:32–38[CrossRef]
    [Google Scholar]
  50. Voigt C. A., Schäfer W., Salomon S. 2005; A secreted lipase of Fusarium graminearum is a virulence factor required for infection of cereals. Plant J42:364–375[CrossRef]
    [Google Scholar]
  51. Wei Y., Shen W., Dauk M., Wang F., Selvaraj G., Zou J. 2004; Targeted gene disruption of glycerol-3-phosphate dehydrogenase in Colletotrichum gloeosporioides reveals evidence that glycerol is a significant transferred nutrient from host plant to fungal pathogen. J Biol Chem279:429–435[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.28261-0
Loading
/content/journal/micro/10.1099/mic.0.28261-0
Loading

Data & Media loading...

Most cited this month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error