1887

Abstract

is able to grow on acyclic monoterpenes (citronellol, citronellate, geraniol and geranylate), and on other methyl-branched compounds such as leucine or isovalerate. The catabolic pathway of citronellol (Atu, acyclic terpene utilization) enters that of leucine/isovalerate (Liu, leucine and isovalerate utilization) at the level of methylcrotonyl-CoA. Key enzymes of the combined pathways are geranyl-CoA carboxylase (GCase) and methylcrotonyl-CoA carboxylase (MCase). In this study, isovalerate-grown cells specifically expressed MCase (apparent molecular mass of the biotin-containing subunit, 74 kDa) only, and the GCase biotin-containing subunit (71 kDa) was not detected. Citronellol- or citronellate-grown cells produced both carboxylases. Biotin-dependent proteins were purified from crude extracts by avidin-affinity chromatography, and assigned to the corresponding coding genes by trypsin fingerprint analysis. The two subunits of MCase corresponded to (PA2014/PA2012) of the genome database, and (PA2888/PA2891) encoded GCase subunits. This finding is contrary to that reported by others. The identified genes are part of two separate gene clusters [ (PA2011–PA2016) and (PA2886–PA2893)] that are thought to encode most of the genes of the Atu and Liu pathways.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.28260-0
2005-11-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/151/11/3649.html?itemId=/content/journal/micro/10.1099/mic.0.28260-0&mimeType=html&fmt=ahah

References

  1. Burke Y. D., Stark M. J., Roach S. L., Sen S. E., Crowell P. L. 1997; Inhibition of pancreatic cancer growth by the dietary isoprenoids farnesol and geraniol. Lipids 32:151–156 [CrossRef]
    [Google Scholar]
  2. Burke Y. D., Ayoubi A. S., Werner S. R., McFarland B. C., Heilman D. K., Ruggeri B. A., Crowell P. L. 2002; Effects of the isoprenoids perillyl alcohol and farnesol on apoptosis biomarkers in pancreatic cancer chemoprevention. Anticancer Res 22:3127–3134
    [Google Scholar]
  3. Cantwell S. G., Lau E. P., Watt D. S., Fall R. R. 1978; Biodegradation of acyclic isoprenoids by Pseudomonas species. J Bacteriol 135:324–333
    [Google Scholar]
  4. Carnesecchi S., Bradaia A., Fischer B., Coelho D., Scholler-Guinard M., Gosse F., Raul F. 2002a; Perturbation by geraniol of cell membrane permeability and signal transduction pathways in human colon cancer cells. J Pharmacol Exp Ther 303:711–715 [CrossRef]
    [Google Scholar]
  5. Carnesecchi S., Langley K., Exinger F., Gosse F., Raul F. 2002b; Geraniol, a component of plant essential oils, sensitizes human colon cancer cells to 5-fluorouracil treatment. IARC Sci Publ 156:407–409
    [Google Scholar]
  6. Carnesecchi S., Bras-Goncalves R., Bradaia A., Zeisel M., Gosse F., Poupon M. F., Raul F. 2004; Geraniol, a component of plant essential oils, modulates DNA synthesis and potentiates 5-fluorouracil efficacy on human colon tumor xenografts. Cancer Lett 215:53–59 [CrossRef]
    [Google Scholar]
  7. Diaz-Perez A. L., Zavala-Hernandez A. N., Cervantes C., Campos-Garcia J. 2004; The gnyRDBHAL cluster is involved in acyclic isoprenoid degradation in Pseudomonas aeruginosa . Appl Environ Microbiol 70:5102–5110 [CrossRef]
    [Google Scholar]
  8. Duncan R. E., Lau D., El-Sohemy A., Archer M. C. 2004; Geraniol and beta-ionone inhibit proliferation, cell cycle progression, and cyclin-dependent kinase 2 activity in MCF-7 breast cancer cells independent of effects on HMG-CoA reductase activity. Biochem Pharmacol 68:1739–1747 [CrossRef]
    [Google Scholar]
  9. Fall R. R. 1981; 3-Methylcrotonyl-CoA and geranyl-CoA carboxylases from Pseudomonas citronellolis . Methods Enzymol 71:791–799
    [Google Scholar]
  10. Fall R. R., Hector M. L. 1977; Acyl-coenzyme A carboxylases. Homologous 3-methylcrotonyl-CoA and geranyl-CoA carboxylases from Pseudomonas citronellolis . Biochemistry 16:4000–4005 [CrossRef]
    [Google Scholar]
  11. Fall R. R., Brown J. L., Schaeffer T. L. 1979; Enzyme recruitment allows the biodegradation of recalcitrant branched hydrocarbons by Pseudomonas citronellolis . Appl Environ Microbiol 38:715–722
    [Google Scholar]
  12. Hector M. L., Fall R. R. 1976a; Multiple acyl-coenzyme A carboxylases in Pseudomonas citronellolis . Biochemistry 15:3465–3472 [CrossRef]
    [Google Scholar]
  13. Hector M. L., Fall R. R. 1976b; Evidence for distinct 3-methylcrotonyl-CoA and geranyl-CoA carboxylases in Pseudomonas citronellolis . Biochem Biophys Res Commun 71:746–753 [CrossRef]
    [Google Scholar]
  14. Hierro I., Valero A., Perez P., Gonzalez P., Cabo M. M., Montilla M. P., Navarro M. C. 2004; Action of different monoterpenic compounds against Anisakis simplex s.l. L3 larvae. Phytomedicine 11:77–82 [CrossRef]
    [Google Scholar]
  15. Höschle B., Jendrossek D. 2005; Utilization of geraniol is dependent on molybdenum in Pseudomonas aeruginosa : evidence for different metabolic routes for oxidation of geraniol and citronellol. Microbiology 151:2277–2283 [CrossRef]
    [Google Scholar]
  16. Izumi S., Takashima O., Hirata T. 1999; Geraniol is a potent inducer of apoptosis-like cell death in the cultured shoot primordia of Matricaria chamomilla . Biochem Biophys Res Commun 259:519–522 [CrossRef]
    [Google Scholar]
  17. Pawar P. V., Sharma R. N., Phadnis A. P., Nanda B., Patwardhan S. A. 1991; Action of some insect growth regulators on mosquito vectors: part I – citronellol based diethers. J Commun Dis 23:118–122
    [Google Scholar]
  18. Rice P. J., Coats J. R. 1994; Insecticidal properties of several monoterpenoids to the house fly ( Diptera: Muscidae ), red flour beetle ( Coleoptera: Tenebrionidae ), and southern corn rootworm ( Coleoptera: Chrysomelidae . J Econ Entomol 87:1172–1179 [CrossRef]
    [Google Scholar]
  19. Schlegel H. G., Kaltwasser H., Gottschalk G. 1961; A submersion method for culture of hydrogen-oxidizing bacteria: growth physiological studies. Arch Mikrobiol 38:209–222 [CrossRef]
    [Google Scholar]
  20. Seubert W. 1960; Degradation of isoprenoid compounds by microorganisms. I. Isolation and characterization of an isoprenoid-degrading bacterium, Pseudomonas citronellolis n. sp. J Bacteriol 79:426–434
    [Google Scholar]
  21. Seubert W., Fass E. 1964a; Studies on the bacterial degradation of isoprenoids. V. The mechanism of isoprenoid degradation. Biochem Z 341:35–44
    [Google Scholar]
  22. Seubert W., Fass E. 1964b; Studies on the bacterial degradation of isoprenoids. IV. The purification and properties of beta-isohexenylglutaconyl-CoA-hydratase and beta-hydroxy-beta-isohexenylglutaryl-CoA-lyase. Biochem Z 341:23–34
    [Google Scholar]
  23. Seubert W., Remberger U. 1963; Studies on the bacterial degradation of isoprenoid compounds. II. The role of carbon dioxide. Biochem Z 338:245–264
    [Google Scholar]
  24. Seubert W., Fass E., Remberger U. 1963; Studies on the bacterial degradation of isoprenoid compounds. III. Purification and properties of geranyl carboxylase. Biochem Z 338:265–275
    [Google Scholar]
  25. Simon R., Priefer U., Pühler A. 1983; A broad host range mobilization system for in vivo genetic engineering: transposon mutagenesis in Gram-negative bacteria. Bio/Technology 1:784–791 [CrossRef]
    [Google Scholar]
  26. Windgassen M., Urban A., Jaeger K. E. 2000; Rapid gene inactivation in Pseudomonas aeruginosa . FEMS Microbiol Lett 193:201–205 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.28260-0
Loading
/content/journal/micro/10.1099/mic.0.28260-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error