1887

Abstract

is able to grow on acyclic monoterpenes (citronellol, citronellate, geraniol and geranylate), and on other methyl-branched compounds such as leucine or isovalerate. The catabolic pathway of citronellol (Atu, acyclic terpene utilization) enters that of leucine/isovalerate (Liu, leucine and isovalerate utilization) at the level of methylcrotonyl-CoA. Key enzymes of the combined pathways are geranyl-CoA carboxylase (GCase) and methylcrotonyl-CoA carboxylase (MCase). In this study, isovalerate-grown cells specifically expressed MCase (apparent molecular mass of the biotin-containing subunit, 74 kDa) only, and the GCase biotin-containing subunit (71 kDa) was not detected. Citronellol- or citronellate-grown cells produced both carboxylases. Biotin-dependent proteins were purified from crude extracts by avidin-affinity chromatography, and assigned to the corresponding coding genes by trypsin fingerprint analysis. The two subunits of MCase corresponded to (PA2014/PA2012) of the genome database, and (PA2888/PA2891) encoded GCase subunits. This finding is contrary to that reported by others. The identified genes are part of two separate gene clusters [ (PA2011–PA2016) and (PA2886–PA2893)] that are thought to encode most of the genes of the Atu and Liu pathways.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.28260-0
2005-11-01
2019-10-22
Loading full text...

Full text loading...

/deliver/fulltext/micro/151/11/3649.html?itemId=/content/journal/micro/10.1099/mic.0.28260-0&mimeType=html&fmt=ahah

References

  1. Burke, Y. D., Stark, M. J., Roach, S. L., Sen, S. E. & Crowell, P. L. ( 1997; ). Inhibition of pancreatic cancer growth by the dietary isoprenoids farnesol and geraniol. Lipids 32, 151–156.[CrossRef]
    [Google Scholar]
  2. Burke, Y. D., Ayoubi, A. S., Werner, S. R., McFarland, B. C., Heilman, D. K., Ruggeri, B. A. & Crowell, P. L. ( 2002; ). Effects of the isoprenoids perillyl alcohol and farnesol on apoptosis biomarkers in pancreatic cancer chemoprevention. Anticancer Res 22, 3127–3134.
    [Google Scholar]
  3. Cantwell, S. G., Lau, E. P., Watt, D. S. & Fall, R. R. ( 1978; ). Biodegradation of acyclic isoprenoids by Pseudomonas species. J Bacteriol 135, 324–333.
    [Google Scholar]
  4. Carnesecchi, S., Bradaia, A., Fischer, B., Coelho, D., Scholler-Guinard, M., Gosse, F. & Raul, F. ( 2002a; ). Perturbation by geraniol of cell membrane permeability and signal transduction pathways in human colon cancer cells. J Pharmacol Exp Ther 303, 711–715.[CrossRef]
    [Google Scholar]
  5. Carnesecchi, S., Langley, K., Exinger, F., Gosse, F. & Raul, F. ( 2002b; ). Geraniol, a component of plant essential oils, sensitizes human colon cancer cells to 5-fluorouracil treatment. IARC Sci Publ 156, 407–409.
    [Google Scholar]
  6. Carnesecchi, S., Bras-Goncalves, R., Bradaia, A., Zeisel, M., Gosse, F., Poupon, M. F. & Raul, F. ( 2004; ). Geraniol, a component of plant essential oils, modulates DNA synthesis and potentiates 5-fluorouracil efficacy on human colon tumor xenografts. Cancer Lett 215, 53–59.[CrossRef]
    [Google Scholar]
  7. Diaz-Perez, A. L., Zavala-Hernandez, A. N., Cervantes, C. & Campos-Garcia, J. ( 2004; ). The gnyRDBHAL cluster is involved in acyclic isoprenoid degradation in Pseudomonas aeruginosa. Appl Environ Microbiol 70, 5102–5110.[CrossRef]
    [Google Scholar]
  8. Duncan, R. E., Lau, D., El-Sohemy, A. & Archer, M. C. ( 2004; ). Geraniol and beta-ionone inhibit proliferation, cell cycle progression, and cyclin-dependent kinase 2 activity in MCF-7 breast cancer cells independent of effects on HMG-CoA reductase activity. Biochem Pharmacol 68, 1739–1747.[CrossRef]
    [Google Scholar]
  9. Fall, R. R. ( 1981; ). 3-Methylcrotonyl-CoA and geranyl-CoA carboxylases from Pseudomonas citronellolis. Methods Enzymol 71, 791–799.
    [Google Scholar]
  10. Fall, R. R. & Hector, M. L. ( 1977; ). Acyl-coenzyme A carboxylases. Homologous 3-methylcrotonyl-CoA and geranyl-CoA carboxylases from Pseudomonas citronellolis. Biochemistry 16, 4000–4005.[CrossRef]
    [Google Scholar]
  11. Fall, R. R., Brown, J. L. & Schaeffer, T. L. ( 1979; ). Enzyme recruitment allows the biodegradation of recalcitrant branched hydrocarbons by Pseudomonas citronellolis. Appl Environ Microbiol 38, 715–722.
    [Google Scholar]
  12. Hector, M. L. & Fall, R. R. ( 1976a; ). Multiple acyl-coenzyme A carboxylases in Pseudomonas citronellolis. Biochemistry 15, 3465–3472.[CrossRef]
    [Google Scholar]
  13. Hector, M. L. & Fall, R. R. ( 1976b; ). Evidence for distinct 3-methylcrotonyl-CoA and geranyl-CoA carboxylases in Pseudomonas citronellolis. Biochem Biophys Res Commun 71, 746–753.[CrossRef]
    [Google Scholar]
  14. Hierro, I., Valero, A., Perez, P., Gonzalez, P., Cabo, M. M., Montilla, M. P. & Navarro, M. C. ( 2004; ). Action of different monoterpenic compounds against Anisakis simplex s.l. L3 larvae. Phytomedicine 11, 77–82.[CrossRef]
    [Google Scholar]
  15. Höschle, B. & Jendrossek, D. ( 2005; ). Utilization of geraniol is dependent on molybdenum in Pseudomonas aeruginosa: evidence for different metabolic routes for oxidation of geraniol and citronellol. Microbiology 151, 2277–2283.[CrossRef]
    [Google Scholar]
  16. Izumi, S., Takashima, O. & Hirata, T. ( 1999; ). Geraniol is a potent inducer of apoptosis-like cell death in the cultured shoot primordia of Matricaria chamomilla. Biochem Biophys Res Commun 259, 519–522.[CrossRef]
    [Google Scholar]
  17. Pawar, P. V., Sharma, R. N., Phadnis, A. P., Nanda, B. & Patwardhan, S. A. ( 1991; ). Action of some insect growth regulators on mosquito vectors: part I – citronellol based diethers. J Commun Dis 23, 118–122.
    [Google Scholar]
  18. Rice, P. J. & Coats, J. R. ( 1994; ). Insecticidal properties of several monoterpenoids to the house fly (Diptera: Muscidae), red flour beetle (Coleoptera: Tenebrionidae), and southern corn rootworm (Coleoptera: Chrysomelidae). J Econ Entomol 87, 1172–1179.[CrossRef]
    [Google Scholar]
  19. Schlegel, H. G., Kaltwasser, H. & Gottschalk, G. ( 1961; ). A submersion method for culture of hydrogen-oxidizing bacteria: growth physiological studies. Arch Mikrobiol 38, 209–222.[CrossRef]
    [Google Scholar]
  20. Seubert, W. ( 1960; ). Degradation of isoprenoid compounds by microorganisms. I. Isolation and characterization of an isoprenoid-degrading bacterium, Pseudomonas citronellolis n. sp. J Bacteriol 79, 426–434.
    [Google Scholar]
  21. Seubert, W. & Fass, E. ( 1964a; ). Studies on the bacterial degradation of isoprenoids. V. The mechanism of isoprenoid degradation. Biochem Z 341, 35–44.
    [Google Scholar]
  22. Seubert, W. & Fass, E. ( 1964b; ). Studies on the bacterial degradation of isoprenoids. IV. The purification and properties of beta-isohexenylglutaconyl-CoA-hydratase and beta-hydroxy-beta-isohexenylglutaryl-CoA-lyase. Biochem Z 341, 23–34.
    [Google Scholar]
  23. Seubert, W. & Remberger, U. ( 1963; ). Studies on the bacterial degradation of isoprenoid compounds. II. The role of carbon dioxide. Biochem Z 338, 245–264.
    [Google Scholar]
  24. Seubert, W., Fass, E. & Remberger, U. ( 1963; ). Studies on the bacterial degradation of isoprenoid compounds. III. Purification and properties of geranyl carboxylase. Biochem Z 338, 265–275.
    [Google Scholar]
  25. Simon, R., Priefer, U. & Pühler, A. ( 1983; ). A broad host range mobilization system for in vivo genetic engineering: transposon mutagenesis in Gram-negative bacteria. Bio/Technology 1, 784–791.[CrossRef]
    [Google Scholar]
  26. Windgassen, M., Urban, A. & Jaeger, K. E. ( 2000; ). Rapid gene inactivation in Pseudomonas aeruginosa. FEMS Microbiol Lett 193, 201–205.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.28260-0
Loading
/content/journal/micro/10.1099/mic.0.28260-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error