1887

Abstract

Phylogenetic screening of 3200 clones from a metagenomic library of Antarctic mesopelagic picoplankton allowed the identification of two bacterial 16S-rDNA-containing clones belonging to the , DeepAnt-1F12 and DeepAnt-32C6. These clones were very divergent, forming a monophyletic cluster with the environmental sequence GR-WP33-58 that branched at the base of the myxobacteria. Except for the possession of complete operons without associated tRNA genes, DeepAnt-1F12 and DeepAnt-32C6 were very different in gene content and organization. Gene density was much higher in DeepAnt-32C6, whereas nearly one-third of DeepAnt-1F12 corresponded to intergenic regions. Many of the predicted genes encoded by these metagenomic clones were informational (i.e. involved in replication, transcription, translation and related processes). Despite this, a few putative cases of horizontal gene transfer were detected, including a transposase. DeepAnt-1F12 contained one putative gene encoding a long cysteine-rich protein, probably membrane-bound and Ca-binding, with only eukaryotic homologues. DeepAnt-32C6 carried some predicted genes involved in metabolic pathways that suggested this organism may be anaerobic and able to ferment and to degrade complex compounds extracellularly.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.28254-0
2006-02-01
2019-11-15
Loading full text...

Full text loading...

/deliver/fulltext/micro/152/2/505.html?itemId=/content/journal/micro/10.1099/mic.0.28254-0&mimeType=html&fmt=ahah

References

  1. Altschul, S. F., Madden, T. L., Schaffer, A. A., Zhang, J., Zhang, Z., Miller, W. & Lipman, D. J. ( 1997; ). Gapped blast and psi-blast: a new generation of protein database search programs. Nucleic Acids Res 25, 3389–3402.[CrossRef]
    [Google Scholar]
  2. Beckingham, K., Lu, A. Q. & Andruss, B. F. ( 1998; ). Calcium-binding proteins and development. Biometals 11, 359–373.[CrossRef]
    [Google Scholar]
  3. Beja, O., Aravind, L., Koonin, E. V. & 9 other authors ( 2000a; ). Bacterial rhodopsin: evidence for a new type of phototrophy in the sea. Science 289, 1902–1906.[CrossRef]
    [Google Scholar]
  4. Beja, O., Suzuki, M. T., Koonin, E. V. & 9 other authors ( 2000b; ). Construction and analysis of bacterial artificial chromosome libraries from a marine microbial assemblage. Environ Microbiol 2, 516–529.[CrossRef]
    [Google Scholar]
  5. Beja, O., Spudich, E. N., Spudich, J. L., Leclerc, M. & DeLong, E. F. ( 2001; ). Proteorhodopsin phototrophy in the ocean. Nature 411, 786–789.[CrossRef]
    [Google Scholar]
  6. Benson, G. ( 1999; ). Tandem Repeats Finder: a program to analyse DNA sequences. Nucleic Acids Res 27, 573–578.[CrossRef]
    [Google Scholar]
  7. Dawid, W. ( 2000; ). Biology and global distribution of myxobacteria in soils. FEMS Microbiol Rev 24, 403–427.[CrossRef]
    [Google Scholar]
  8. De La Torre, J. R., Christianson, L. M., Beja, O., Suzuki, M. T., Karl, D. M., Heidelberg, J. & DeLong, E. F. ( 2003; ). Proteorhodopsin genes are distributed among divergent marine bacterial taxa. Proc Natl Acad Sci U S A 100, 12830–12835.[CrossRef]
    [Google Scholar]
  9. del Giorgio, P. A. & Duarte, C. M. ( 2002; ). Respiration in the open ocean. Nature 420, 379–384.[CrossRef]
    [Google Scholar]
  10. DeLong, E. F. ( 1992; ). Archaea in coastal marine environments. Proc Natl Acad Sci U S A 89, 5685–5689.[CrossRef]
    [Google Scholar]
  11. DeLong, E. F. ( 2001; ). Microbial seascapes revisited. Curr Opin Microbiol 4, 290–295.[CrossRef]
    [Google Scholar]
  12. Dworkin, M. ( 1996; ). Recent advances in the social and developmental biology of the myxobacteria. Microbiol Rev 60, 70–102.
    [Google Scholar]
  13. Fuhrman, J. A. & Davis, A. A. ( 1997; ). Widespread Archaea and novel Bacteria from the deep sea as shown by 16S rRNA gene sequences. Mar Ecol Prog Ser 150, 275–285.[CrossRef]
    [Google Scholar]
  14. Fuhrman, J. A., McCallum, K. & Davis, A. A. ( 1992; ). Novel major archaebacterial group from marine plankton. Nature 356, 148–149.[CrossRef]
    [Google Scholar]
  15. Geer, L. Y., Domrachev, M., Lipman, D. J. & Bryant, S. H. ( 2002; ). cdart: protein homology by domain architecture. Genome Res 12, 1619–1623.[CrossRef]
    [Google Scholar]
  16. Giovannoni, S. J., Britschgi, T. B., Moyer, C. L. & Field, K. G. ( 1990; ). Genetic diversity in Sargasso Sea bacterioplankton. Nature 345, 60–63.[CrossRef]
    [Google Scholar]
  17. Giovannoni, S. J., Rappe, M. S., Vergin, K. L. & Adair, N. L. ( 1996; ). 16S rRNA genes reveal stratified open ocean bacterioplankton populations related to the green non-sulfur bacteria. Proc Natl Acad Sci U S A 93, 7979–7984.[CrossRef]
    [Google Scholar]
  18. Gordon, D. A. & Giovannoni, S. J. ( 1996; ). Detection of stratified microbial populations related to Chlorobium and Fibrobacter species in the Atlantic and Pacific oceans. Appl Environ Microbiol 62, 1171–1177.
    [Google Scholar]
  19. Hallam, S. J., Putnam, N., Preston, C. M., Detter, J. C., Rokhsar, D., Richardson, P. M. & DeLong, E. F. ( 2004; ). Reverse methanogenesis: testing the hypothesis with environmental genomics. Science 305, 1457–1462.[CrossRef]
    [Google Scholar]
  20. He, Q. & Sanford, R. A. ( 2003; ). Characterization of Fe(III) reduction by chlororespiring Anaeromyxobacter dehalogenans. Appl Environ Microbiol 69, 2712–2718.[CrossRef]
    [Google Scholar]
  21. Heidelberg, J. F., Seshadri, R., Haveman, S. A. & 32 other authors ( 2004; ). The genome sequence of the anaerobic, sulfate-reducing bacterium Desulfovibrio vulgaris Hildenborough. Nat Biotechnol 22, 554–559.[CrossRef]
    [Google Scholar]
  22. Hofmann, K. & Stoffel, W. ( 1993; ). TMbase – a database of membrane-spanning protein segments. Biol Chem 347, 166.
    [Google Scholar]
  23. Hou, S., Saw, J. H., Lee, K. S. & 19 other authors ( 2004; ). Genome sequence of the deep-sea gamma-proteobacterium Idiomarina loihiensis reveals amino acid fermentation as a source of carbon and energy. Proc Natl Acad Sci U S A 101, 18036–18041.[CrossRef]
    [Google Scholar]
  24. Inagaki, F., Sakihama, Y., Inoue, A., Kato, C. & Horikoshi, K. ( 2002; ). Molecular phylogenetic analyses of reverse-transcribed bacterial rRNA obtained from deep-sea cold seep sediments. Environ Microbiol 4, 277–286.[CrossRef]
    [Google Scholar]
  25. Jeanthon, C. ( 2000; ). Molecular ecology of hydrothermal vent microbial communities. Antonie Van Leeuwenhoek 77, 117–133.[CrossRef]
    [Google Scholar]
  26. Jobb, G., von Haeseler, A. & Strimmer, K. ( 2004; ). treefinder: a powerful graphical analysis environment for molecular phylogenetics. BMC Evol Biol 4, 18.[CrossRef]
    [Google Scholar]
  27. Karner, M. B., DeLong, E. F. & Karl, D. M. ( 2001; ). Archaeal dominance in the mesopelagic zone of the Pacific Ocean. Nature 409, 507–510.[CrossRef]
    [Google Scholar]
  28. Kickhoefer, V. A., Poderycki, M. J., Chan, E. K. & Rome, L. H. ( 2002; ). The La RNA-binding protein interacts with the vault RNA and is a vault-associated protein. J Biol Chem 277, 41282–41286.[CrossRef]
    [Google Scholar]
  29. Koonin, E. V. ( 2003; ). Horizontal gene transfer: the path to maturity. Mol Microbiol 50, 725–727.[CrossRef]
    [Google Scholar]
  30. Kostichka, K., Thomas, S. M., Gibson, K. J., Nagarajan, V. & Cheng, Q. ( 2001; ). Cloning and characterization of a gene cluster for cyclododecanone oxidation in Rhodococcus ruber SC1. J Bacteriol 183, 6478–6486.[CrossRef]
    [Google Scholar]
  31. López-García, P., López-López, A., Moreira, D. & Rodríguez-Valera, F. ( 2001a; ). Diversity of free-living prokaryotes from a deep-sea site at the Antarctic Polar Front. FEMS Microbiol Ecol 36, 193–202.[CrossRef]
    [Google Scholar]
  32. López-García, P., Moreira, D., López-López, A. & Rodríguez-Valera, F. ( 2001b; ). A novel haloarchaeal-related lineage is widely distributed in deep oceanic regions. Environ Microbiol 3, 72–78.[CrossRef]
    [Google Scholar]
  33. López-García, P., Duperron, S., Philippot, P., Foriel, J., Susini, J. & Moreira, D. ( 2003; ). Bacterial diversity in hydrothermal sediment and epsilonproteobacterial dominance in experimental microcolonizers at the Mid-Atlantic Ridge. Environ Microbiol 5, 961–976.[CrossRef]
    [Google Scholar]
  34. López-García, P., Brochier, C., Moreira, D. & Rodríguez-Valera, F. ( 2004; ). Comparative analysis of a genome fragment of an uncultivated mesopelagic crenarchaeote reveals multiple horizontal gene transfers. Environ Microbiol 6, 19–34.
    [Google Scholar]
  35. Lovley, D. R., Phillips, E. J., Lonergan, D. J. & Widman, P. K. ( 1995; ). Fe(III) and S0 reduction by Pelobacter carbinolicus. Appl Environ Microbiol 61, 2132–2138.
    [Google Scholar]
  36. Lovley, D. R., Holmes, D. E. & Nevin, K. P. ( 2004; ). Dissimilatory Fe(III) and Mn(IV) reduction. Adv Microb Physiol 49, 219–286.
    [Google Scholar]
  37. Lowe, T. M. & Eddy, S. R. ( 1997; ). tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res 25, 955–964.[CrossRef]
    [Google Scholar]
  38. Madrid, V. M., Taylor, G. T., Scranton, M. I. & Chistoserdov, A. Y. ( 2001; ). Phylogenetic diversity of bacterial and archaeal communities in the anoxic zone of the Cariaco Basin. Appl Environ Microbiol 67, 1663–1674.[CrossRef]
    [Google Scholar]
  39. Makino, Y., Cao, R., Svensson, K., Bertilsson, G., Asman, M., Tanaka, H., Cao, Y., Berkenstam, A. & Poellinger, L. ( 2001; ). Inhibitory PAS domain protein is a negative regulator of hypoxia-inducible gene expression. Nature 414, 550–554.[CrossRef]
    [Google Scholar]
  40. Methe, B. A., Nelson, K. E., Eisen, J. A. & 31 other authors ( 2003; ). Genome of Geobacter sulfurreducens: metal reduction in subsurface environments. Science 302, 1967–1969.[CrossRef]
    [Google Scholar]
  41. Mills, H. J., Martinez, R. J., Story, S. & Sobecky, P. A. ( 2004; ). Identification of members of the metabolically active microbial populations associated with Beggiatoa species mat communities from gulf of Mexico cold-seep sediments. Appl Environ Microbiol 70, 5447–5458.[CrossRef]
    [Google Scholar]
  42. Moreira, D., Rodriguez-Valera, F. & Lopez-Garcia, P. ( 2004; ). Analysis of a genome fragment of a deep-sea uncultivated Group II euryarchaeote containing 16S rDNA, a spectinomycin-like operon and several energy metabolism genes. Environ Microbiol 6, 959–969.[CrossRef]
    [Google Scholar]
  43. Morris, R. M., Rappe, M. S., Connon, S. A., Vergin, K. L., Siebold, W. A., Carlson, C. A. & Giovannoni, S. J. ( 2002; ). SAR11 clade dominates ocean surface bacterioplankton communities. Nature 420, 806–810.[CrossRef]
    [Google Scholar]
  44. Osborn, A. M. & Boltner, D. ( 2002; ). When phage, plasmids, and transposons collide: genomic islands, and conjugative- and mobilizable-transposons as a mosaic continuum. Plasmid 48, 202–212.[CrossRef]
    [Google Scholar]
  45. Pace, N. R. ( 1997; ). A molecular view of microbial diversity and the biosphere. Science 276, 734–740.[CrossRef]
    [Google Scholar]
  46. Petrie, L., North, N. N., Dollhopf, S. L., Balkwill, D. L. & Kostka, J. E. ( 2003; ). Enumeration and characterization of iron(III)-reducing microbial communities from acidic subsurface sediments contaminated with uranium(VI). Appl Environ Microbiol 69, 7467–7479.[CrossRef]
    [Google Scholar]
  47. Philippe, H. ( 1993; ). must, a computer package of Management Utilities for Sequences and Trees. Nucleic Acids Res 21, 5264–5272.[CrossRef]
    [Google Scholar]
  48. Rabus, R., Ruepp, A., Frickey, T. & 15 other authors ( 2004; ). The genome of Desulfotalea psychrophila, a sulfate-reducing bacterium from permanently cold Arctic sediments. Environ Microbiol 6, 887–902.[CrossRef]
    [Google Scholar]
  49. Rappé, M. S. & Giovannoni, S. J. ( 2003; ). The uncultured microbial majority. Annu Rev Microbiol 57, 369–394.[CrossRef]
    [Google Scholar]
  50. Reichenbach, H. ( 1999; ). The ecology of the myxobacteria. Environ Microbiol 1, 15–21.[CrossRef]
    [Google Scholar]
  51. Rendulic, S., Jagtap, P., Rosinus, A. & 10 other authors ( 2004; ). A predator unmasked: life cycle of Bdellovibrio bacteriovorus from a genomic perspective. Science 303, 689–692.[CrossRef]
    [Google Scholar]
  52. Reysenbach, A. L. & Cady, S. L. ( 2001; ). Microbiology of ancient and modern hydrothermal systems. Trends Microbiol 9, 79–86.[CrossRef]
    [Google Scholar]
  53. Ronquist, F. & Huelsenbeck, J. P. ( 2003; ). MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19, 1572–1574.[CrossRef]
    [Google Scholar]
  54. Sanford, R. A., Cole, J. R. & Tiedje, J. M. ( 2002; ). Characterization and description of Anaeromyxobacter dehalogenans gen. nov., sp. nov., an aryl-halorespiring facultative anaerobic myxobacterium. Appl Environ Microbiol 68, 893–900.[CrossRef]
    [Google Scholar]
  55. Segerer, A. H. & Stetter, K. O. ( 1999; ). The order Sulfolobales. In The Prokaryotes: An Evolving Electronic Resource for the Microbiological Community, http://141.150.157.117:8080/prokPUB/chaprender/jsp/showchap.jsp?chapnum=29. Edited by M. Dworkin. New York: Springer.
  56. Selenska-Pobell, S. ( 2002; ). Diversity and activity of bacteria in uranium mining waste piles. In Interactions of Microorganisms with Radionuclides, pp. 225–254. Edited by M. J. Keith-Roach & F. R. Lievens. Amsterdam: Elsevier.
  57. Syu, M. J. ( 2001; ). Biological production of 2,3-butanediol. Appl Microbiol Biotechnol 55, 10–18.[CrossRef]
    [Google Scholar]
  58. Tatusov, R. L., Koonin, E. V. & Lipman, D. J. ( 1997; ). A genomic perspective on protein families. Science 278, 631–637.[CrossRef]
    [Google Scholar]
  59. Tatusov, R. L., Galperin, M. Y., Natale, D. A. & Koonin, E. V. ( 2000; ). The COG database: a tool for genome-scale analysis of protein functions and evolution. Nucleic Acids Res 28, 33–36.[CrossRef]
    [Google Scholar]
  60. Thompson, J. D., Higgins, D. G. & Gibson, T. J. ( 1994; ). clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22, 4673–4680.[CrossRef]
    [Google Scholar]
  61. Tomley, F. M., Billington, K. J., Bumstead, J. M., Clark, J. D. & Monaghan, P. ( 2001; ). EtMIC4: a microneme protein from Eimeria tenella that contains tandem arrays of epidermal growth factor-like repeats and thrombospondin type-I repeats. Int J Parasitol 31, 1303–1310.[CrossRef]
    [Google Scholar]
  62. Tyson, G. W., Chapman, J., Hugenholtz, P. & 7 other authors ( 2004).; Community structure and metabolism through reconstruction of microbial genomes from the environment. Nature 428 , 37 –43. [CrossRef]
    [Google Scholar]
  63. Venter, J. C., Remington, K., Heidelberg, J. F. & 20 other authors ( 2004; ). Environmental genome shotgun sequencing of the Sargasso Sea. Science 304, 66–74.[CrossRef]
    [Google Scholar]
  64. Witcombe, D. M., Belli, S. I., Wallach, M. G. & Smith, N. C. ( 2003; ). Molecular characterisation of EmTFP250: a novel member of the TRAP protein family in Eimeria maxima. Int J Parasitol 33, 691–702.[CrossRef]
    [Google Scholar]
  65. Woese, C. R. ( 1987; ). Bacterial evolution. Microbiol Rev 51, 221–271.
    [Google Scholar]
  66. Wright, T. D., Vergin, K. L., Boyd, P. W. & Giovannoni, S. J. ( 1997; ). A novel delta-subdivision proteobacterial lineage from the lower ocean surface layer. Appl Environ Microbiol 63, 1441–1448.
    [Google Scholar]
  67. Zaballos, M., López-López, A., Ovreas, L., Galán Bartual, S., D'Auria, G., Legault, B., Alba, J. C., Pushker, R., Daaeand, F. L. & Rodríguez-Valera, F. ( 2006; ). Comparison of prokaryotic diversity at offshore oceanic locations reveals a different microbiota in the Mediterranean Sea. FEMS Microb Ecol (in press).
    [Google Scholar]
  68. Zhulin, I. B., Taylor, B. L. & Dixon, R. ( 1997; ). PAS domain S-boxes in Archaea, Bacteria and sensors for oxygen and redox. Trends Biochem Sci 22, 331–333.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.28254-0
Loading
/content/journal/micro/10.1099/mic.0.28254-0
Loading

Data & Media loading...

Supplements

Bayesian phylogenetic tree showing the position of DeepAnt-32C6 ORF 3 and its bacterial adenosylmethionine-8-amino-7-oxononanoate aminotransferase homologues. A possible case of horizontal gene transfer (HGT) affecting DeepAnt-32C6 ORF 3 from high-G+C Gram-positive bacteria can be observed. Posterior probabilities are indicated at the nodes. (Acrobat PDF file)

PDF

Bayesian phylogenetic tree showing the position of DeepAnt-1F12 ORF 8 and its transposase homologues in other bacteria. A possible case of HGT affecting DeepAnt-1F12 ORF 8 from can be implied. Posterior probabilities are indicated at the nodes. (Acrobat PDF file)

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error