1887

Abstract

The gene encoding an enantioselective arylacetonitrilase was identified on a 3·8 kb DNA fragment from the genomic DNA of EBC191. The gene was isolated, sequenced and cloned into the -rhamnose-inducible expression vector pJOE2775. The nitrilase was produced in large quantities and purified as a histidine-tagged enzyme from crude extracts of -rhamnose-induced cells of JM109. The purified nitrilase was significantly stabilized during storage by the addition of 1 M ammonium sulfate. The temperature optimum (50 °C), pH optimum (pH 6·5), and specific activity of the recombinant nitrilase were similar to those of the native enzyme from EBC191. The enzyme hydrolysed various phenylacetonitriles with different substituents in the 2-position and also heterocyclic and bicyclic arylacetonitriles to the corresponding carboxylic acids. The conversion of most arylacetonitriles was accompanied by the formation of different amounts of amides as by-products. The relative amounts of amides formed from different nitriles increased with an increasing negative inductive effect of the substituent in the 2-position. The acids and amides that were formed from chiral nitriles demonstrated in most cases opposite enantiomeric excesses. Thus mandelonitrile was converted by the nitrilase preferentially to -mandelic acid and -mandelic acid amide. The nitrilase gene is physically linked in the genome of with genes encoding the degradative pathway for mandelic acid. This might suggest a natural function of the nitrilase in the degradation of mandelonitrile or similar naturally occurring hydroxynitriles.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.28246-0
2005-11-01
2019-10-14
Loading full text...

Full text loading...

/deliver/fulltext/micro/151/11/3639.html?itemId=/content/journal/micro/10.1099/mic.0.28246-0&mimeType=html&fmt=ahah

References

  1. Altenbuchner, J., Vieill, P. & Pelletier, I. ( 1992; ). Positive selection vectors based on palindromic DNA sequences. Methods Enzymol 216, 457–466.
    [Google Scholar]
  2. Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipmann, D. J. ( 1990; ). Basic local alignment search tool. J Mol Biol 215, 403–410.[CrossRef]
    [Google Scholar]
  3. Azakami, H., Sugino, H., Yokoro, N., Iwata, N. & Murooka, Y. ( 1993; ). moaR, a gene that encodes a positive regulator of the monoamine regulon in Klebsiella aerogenes. J Bacteriol 175, 6287–6292.
    [Google Scholar]
  4. Bandyopadhyay, A. K., Nagasawa, T., Asano, Y., Fujishiro, K., Yoshiki, T. & Yamada, H. ( 1986; ). Purification and characterization of benzonitrilase from Arthrobacter sp. strain J-1. Appl Environ Microbiol 51, 302–306.
    [Google Scholar]
  5. Barker, R. F., Idler, K. B., Thompson, D. V. & Kemp, J. D. ( 1983; ). Nucleotide sequence of the T-DNA region from the Agrobacterium tumefaciens octopine Ti plasmid pTi15955. Plant Mol Biol 2, 335–350.[CrossRef]
    [Google Scholar]
  6. Bauer, R., Hirrlinger, B., Layh, N., Stolz, A. & Knackmuss, H.-J. ( 1994; ). Enantioselective hydrolysis of racemic 2-phenylpropionitrile and other (R,S)-2-arylacetonitriles by a new bacterial isolate, Agrobacterium tumefaciens strain d3. Appl Microbiol Biotechnol 42, 1–7.[CrossRef]
    [Google Scholar]
  7. Bunch, A. W. ( 1998; ). Nitriles. In Biotechnology, vol. 8a, Biotransformations I, pp. 277–324. Edited by H. J. Rehm & G. Reed. Weinheim: VCH Wiley.
  8. Chung, C. T., Niemela, S. L. & Miller, R. H. ( 1989; ). One-step preparation of competent Escherichia coli: transformation and storage of bacterial cells in the same solution. Proc Natl Acad Sci U S A 86, 2172–2175.[CrossRef]
    [Google Scholar]
  9. Collier, L. S., Nichols, N. N. & Neidle, E. L. ( 1997; ). BenK encodes a hydrophobic permease-like protein involved in benzoate degradation by Acinetobacter sp. strain ADP1. J Bacteriol 179, 5943–5946.
    [Google Scholar]
  10. Dorn, E., Hellwig, M., Reineke, W. & Knackmuss, H.-J. ( 1974; ). Isolation and characterization of a 3-chlorobenzoate degrading pseudomonad. Arch Microbiol 99, 61–70.[CrossRef]
    [Google Scholar]
  11. Effenberger, F. & Osswald, S. ( 2001; ). Enantioselective hydrolysis of (RS)-2-fluoroarylacetonitriles using nitrilase from Arabidopsis thaliana. Tetrahedron: Asymmetry 12, 279–285.[CrossRef]
    [Google Scholar]
  12. Gish, W. & States, D. J. ( 1993; ). Identification of protein coding regions by database similarity search. Nat Genet 3, 266–272.[CrossRef]
    [Google Scholar]
  13. Goldlust, A. & Bohak, Z. ( 1989; ). Induction, purification, and characterization of the nitrilase of Fusarium oxysporum f. sp. melonis. Biotechnol Appl Biochem 11, 581–601.
    [Google Scholar]
  14. Harper, D. B. ( 1976; ). Purification and properties of an unusual nitrilase from Nocardia NCIMB11216. Biochem Soc Trans 4, 502–504.
    [Google Scholar]
  15. Harper, D. B. ( 1977; ). Fungal degradation of aromatic nitriles. Enzymology of C-N cleavage by Fusarium solani. Biochem J 167, 685–692.
    [Google Scholar]
  16. Harper, D. B. ( 1985; ). Characterization of a nitrilase from Nocardia sp. (Rhodochrous group) N.C.I.B. 11215, using p-hydroxybenzonitrile as sole carbon source. Int J Biochem 17, 677–683.[CrossRef]
    [Google Scholar]
  17. Harwood, C. S., Nichols, N. N., Kim, M. K., Ditty, J. L. & Parales, R. E. ( 1994; ). Identification of the pcaRKF gene cluster from Pseudomonas putida: involvement in chemotaxis, biodegradation, and transport of 4-hydroxybenzoate. J Bacteriol 176, 6479–6488.
    [Google Scholar]
  18. Hook, R. H. & Robinson, W. G. ( 1964; ). Ricinine nitrilase: II. Purification and properties. J Biol Chem 239, 4263–4267.
    [Google Scholar]
  19. Kato, Y., Nakamura, K., Sakiyama, H., Mayhew, S. G. & Asano, Y. ( 2000; ). Novel heme-containing lyase, phenylacetaldoxime dehydratase from Bacillus sp. strain OxB-1: purification, characterization, and molecular cloning of the gene. Biochemistry 39, 800–809.[CrossRef]
    [Google Scholar]
  20. Kieser, T. ( 1984; ). Factors affecting the isolation of ccc DNA from Streptomyces lividans and Escherichia coli. Plasmid 12, 19–36.[CrossRef]
    [Google Scholar]
  21. Kiziak, C. ( 1998; ). Heterologe Produktion der Nitrilase aus Pseudomonas fluorescens EBC191 und chimärer Enzymvarianten in E. coli. Diplomarbeit, Universität Stuttgart.
  22. Kobayashi, M., Nagasawa, T. & Yamada, H. ( 1989; ). Nitrilase from Rhodococcus rhodochrous J1. Purification and characterization. Eur J Biochem 182, 349–356.[CrossRef]
    [Google Scholar]
  23. Kobayashi, M., Yanaka, N., Nagasawa, T. & Yamada, H. ( 1990; ). Purification and characterization of a novel nitrilase of Rhodococcus rhodochrous K22 that acts on aliphatic nitriles. J Bacteriol 172, 4807–4815.
    [Google Scholar]
  24. Kobayashi, M., Komeda, H., Yanaka, N., Nagasawa, T. & Yamada, H. ( 1992; ). Nitrilase from Rhodococcus rhodochrous J1. Sequencing and overexpression of the gene and identification of an essential cysteine residue. J Biol Chem 267, 20746–20751.
    [Google Scholar]
  25. Komeda, H., Hori, Y., Kobayashi, M. & Shimizu, S. ( 1996; ). Transcriptional regulation of the Rhodococcus rhodochrous J1 nitA gene encoding a nitrilase. Proc Natl Acad Sci U S A 93, 10572–10577.[CrossRef]
    [Google Scholar]
  26. Laemmli, U. K. ( 1970; ). Cleavage of structure proteins during the assembly of the head of bacteriophage T4. Nature 227, 680–685.[CrossRef]
    [Google Scholar]
  27. Layh, N., Stolz, A., Förster, S., Effenberger, F. & Knackmuss, H.-J. ( 1992; ). Enantioselective hydrolysis of O-acetylmandelonitrile to O-acetylmandelic acid by bacterial nitrilases. Arch Microbiol 158, 405–411.
    [Google Scholar]
  28. Layh, N., Stolz, A., Böhme, S., Effenberger, F. & Knackmuss, H.-J. ( 1994; ). Enantioselective hydrolysis of racemic naproxen nitrile and naproxen amide to S-naproxen by new bacterial isolates. J Biotechnol 33, 175–182.[CrossRef]
    [Google Scholar]
  29. Layh, N., Hirrlinger, B., Stolz, A. & Knackmuss, H.-J. ( 1997; ). Enrichment strategies for nitrile-hydrolysing bacteria. Appl Microbiol Biotechnol 47, 668–674.[CrossRef]
    [Google Scholar]
  30. Layh, N., Parratt, J. & Willets, A. ( 1998; ). Characterization and partial purification of an enantioselective arylacetonitrilase from Pseudomonas fluorescens DSM 7155. J Mol Catal B Enzym 417–424.
    [Google Scholar]
  31. Martinková, L. & Kren, V. ( 2002; ). Nitrile- and amide-converting microbial enzymes: stereo-, regio- and chemoselectivity. Biocatal Biotrans 20, 79–93.
    [Google Scholar]
  32. Mauger, J., Nagasawa, T. & Yamada, H. ( 1990; ). Occurrence of a novel nitrilase, arylacetonitrilase, in Alcaligenes faecalis JM3. Arch Microbiol 155, 1–6.[CrossRef]
    [Google Scholar]
  33. McGowan, S., Sebaihia, M., Jones, S. & 7 other authors ( 1995; ). Carbapenem antibiotic production in Erwinia carotovora is regulated by CarR, a homologue of the LuxR transcriptional activator. Microbiology 141, 541–550.[CrossRef]
    [Google Scholar]
  34. McLeish, M. J., Kneen, M. M., Gopalakrishna, K. N., Koo, C. W., Babbitt, P. C., Gerlt, J. A. & Kenyon, G. L. ( 2003; ). Identification and characterization of a mandelamide hydrolase and an NAD(P)+-dependent benzaldehyde dehydrogenase from Pseudomonas putida ATCC 12633. J Bacteriol 185, 2451–2456.[CrossRef]
    [Google Scholar]
  35. Moser, R. ( 1996; ). Charakterisierung, Reinigung und N-terminale Sequenzierung der Nitrilase aus P. fluorescens EBC191 Diplomarbeit, Universität Stuttgart.
  36. Nagasawa, T., Mauger, J. & Yamada, H. ( 1990; ). A novel nitrilase, arylacetonitrilase, of Alcaligenes faecalis JM3. Purification and characterization. Eur J Biochem 194, 765–772.[CrossRef]
    [Google Scholar]
  37. Nagasawa, T., Wieser, M., Nakamura, T., Iwahara, H., Yoshida, T. & Geck, K. ( 2000; ). Nitrilase of Rhodococcus rhodochrous J1: conversion into the active form by subunit association. Eur J Biochem 267, 138–144.[CrossRef]
    [Google Scholar]
  38. Nicholas, K. B. & Nicholas, H. B., Jr ( 1996; ). genedoc: a tool for editing and annotating multiple sequence alignments. Distributed by the author per anonymous ftp.
  39. Ochman, H., Ayala, F. J. & Hartl, D. L. ( 1993; ). Use of polymerase chain reaction to amplify segments outside boundaries of known sequences. Methods Enzymol 218, 309–321.
    [Google Scholar]
  40. Osswald, S., Wajant, H. & Effenberger, F. ( 2002; ). Characterization and synthetic applications of recombinant AtNIT1 from Arabidopsis thaliana. Eur J Biochem 269, 680–687.[CrossRef]
    [Google Scholar]
  41. Pabo, C. O. & Sauer, R. T. ( 1984; ). Protein-DNA recognition. Annu Rev Biochem 53, 293–321.[CrossRef]
    [Google Scholar]
  42. Piotrowski, M., Schönfelder, S. & Weiler, E. W. ( 2001; ). The Arabidopsis thaliana isogene NIT4 and its orthologs in tobacco encode β-cyano-l-alanine hydratase/nitrilase. J Biol Chem 276, 2616–2621.[CrossRef]
    [Google Scholar]
  43. Robinson, W. G. & Hook, R. H. ( 1964; ). Ricinine nitrilase: I. Reaction product and substrate specificity. J Biol Chem 239, 4257–4262.
    [Google Scholar]
  44. Sambrook, J., Fritsch, E. F. & Maniatis, T. ( 1989; ). Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  45. Schulze, B. ( 2002; ). Hydrolysis and formation of C-N bonds. In Enzyme Catalysis in Organic Synthesis, vol. II, pp. 699–715. Edited by K. Drauz & H. Waldmann. Weinheim: VCH Wiley.
  46. Stevenson, D. E., Feng, R., Dumas, F., Groleau, D., Mihoc, A. & Storer, A. C. ( 1992; ). Mechanistic and structural studies on Rhodococcus ATCC39484. Biotechnol Appl Biochem 15, 283–302.
    [Google Scholar]
  47. Thomson, J. D., Higgins, D. G. & Gibson, T. J. ( 1994; ). clustalw: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position specific gap penalties and weight matrix choice. Nucleic Acids Res 22, 4673–4680.[CrossRef]
    [Google Scholar]
  48. Tsou, A. Y., Ransom, S. C., Gerlt, J. A., Buechter, D. D., Babbitt, P. C. & Kenyon, G. L. ( 1990; ). Mandelate pathway of Pseudomonas putida: sequence relationships involving mandelate racemase, (S)-mandelate dehydrogenase, and benzoylformate decarboxylase and expression of benzoylformate decarboxylase in Escherichia coli. Biochemistry 29, 9856–9862.[CrossRef]
    [Google Scholar]
  49. Vieira, J. & Messing, J. ( 1982; ). The pUC plasmids and M13mp7-derived system for insertion mutagenesis and sequencing with synthetic universal primers. Gene 19, 259–268.[CrossRef]
    [Google Scholar]
  50. Volff, J.-N., Eichenseer, C., Viell, P., Piendl, W. & Altenbuchner, J. ( 1996; ). Nucleotide sequence and role in DNA amplification of the direct repeats composing the amplifiable element AUD1 of Streptomyces lividans 66. Mol Microbiol 21, 1037–1047.[CrossRef]
    [Google Scholar]
  51. Yamamoto, K., Ueno, Y., Otsubo, K., Kawakami, K. & Komatsu, K.-I. ( 1990; ). Production of S-(+)-ibuprofen from a nitrile compound by Acinetobacter sp. strain AK226. Appl Environ Microbiol 56, 3125–3129.
    [Google Scholar]
  52. Yamamoto, K., Fujimatsu, I. & Komatsu, K.-I. ( 1992; ). Purification and characterization of the nitrilase from Alcaligenes faecalis ATCC8750 responsible for enantioselective hydrolysis of mandelonitrile. J Ferment Bioeng 73, 425–430.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.28246-0
Loading
/content/journal/micro/10.1099/mic.0.28246-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error