1887

Abstract

The genes are necessary for maintaining the outer-membrane integrity of Gram-negative bacteria. These genes were first described in , and more recently in several other species. They are involved in the pathogenesis of , , and . The role of the genes in bacterial pathogenesis was investigated in the phytopathogenic enterobacterium , assuming that this organism might be a good model for such a study. The whole region was characterized. Tol-Pal proteins, except TolA, showed high identity scores with their homologues. mutants were constructed by introducing a –kan cassette in the , , , , and genes. All the mutants were hypersensitive to bile salts. Mutations in , , and were deleterious for the bacteria, which required high concentrations of sugars or osmoprotectants for their viability. Consistent with this observation, they were greatly impaired in their cell morphology and division, which was evidenced by observations of cell filaments, spherical forms, membrane blebbing and mislocalized bacterial septa. Moreover, mutants showed a reduced virulence in a potato tuber model and on chicory leaves. This could be explained by a combination of impaired phenotypes in the mutants, such as reduced growth and motility and a decreased production of pectate lyases, the major virulence factor of .

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.28237-0
2005-10-01
2019-12-10
Loading full text...

Full text loading...

/deliver/fulltext/micro/151/10/3337.html?itemId=/content/journal/micro/10.1099/mic.0.28237-0&mimeType=html&fmt=ahah

References

  1. Bereswill, S. & Geider, K. ( 1997; ). Characterization of the rcsB gene from Erwinia amylovora and its influence on exopolysaccharide synthesis and virulence of the fire blight pathogen. J Bacteriol 179, 1354–1361.
    [Google Scholar]
  2. Bernadac, A., Gavioli, M., Lazzaroni, J. C., Raina, S. & Lloubes, R. ( 1998; ). Escherichia coli tol-pal mutants form outer membrane vesicles. J Bacteriol 180, 4872–4878.
    [Google Scholar]
  3. Bouveret, E., Rigal, A., Lazdunski, C. & Benedetti, H. ( 1998; ). Distinct regions of the colicin A translocation domain are involved in the interaction with TolA and TolB proteins upon import into Escherichia coli. Mol Microbiol 27, 143–157.[CrossRef]
    [Google Scholar]
  4. Bowe, F., Lipps, C. J., Tsolis, R. M., Groisman, E., Heffron, F. & Kusters, J. G. ( 1998; ). At least four percent of the Salmonella typhimurium genome is required for fatal infection of mice. Infect Immun 66, 3372–3377.
    [Google Scholar]
  5. Cano, D. A., Dominguez-Bernal, G., Tierrez, A., Garcia-Del Portillo, F. & Casadesus, J. ( 2002; ). Regulation of capsule synthesis and cell motility in Salmonella enterica by the essential gene igaA. Genetics 162, 1513–1523.
    [Google Scholar]
  6. Carballes, F., Bertrand, C., Bouche, J. P. & Cam, K. ( 1999; ). Regulation of Escherichia coli cell division genes ftsA and ftsZ by the two-component system rcsC-rcsB. Mol Microbiol 34, 442–450.[CrossRef]
    [Google Scholar]
  7. Cascales, E., Lloubes, R. & Sturgis, J. N. ( 2001; ). The TolQ-TolR proteins energize TolA and share homologies with the flagellar motor proteins MotA-MotB. Mol Microbiol 42, 795–807.
    [Google Scholar]
  8. Cascales, E., Bernadac, A., Gavioli, M., Lazzaroni, J. C. & Lloubes, R. ( 2002; ). Pal lipoprotein of Escherichia coli plays a major role in outer membrane integrity. J Bacteriol 184, 754–759.[CrossRef]
    [Google Scholar]
  9. Clavel, T., Lazzaroni, J. C., Vianney, A. & Portalier, R. ( 1996; ). Expression of the tolQRA genes of Escherichia coli K-12 is controlled by the RcsC sensor protein involved in capsule synthesis. Mol Microbiol 19, 19–25.[CrossRef]
    [Google Scholar]
  10. Clavel, T., Germon, P., Vianney, A., Portalier, R. & Lazzaroni, J. C. ( 1998; ). TolB protein of Escherichia coli K-12 interacts with the outer membrane peptidoglycan-associated proteins Pal, Lpp and OmpA. Mol Microbiol 29, 359–367.[CrossRef]
    [Google Scholar]
  11. Crowe, J. H., Crowe, L. M., Carpenter, J. F., Rudolph, A. S., Wistrom, C. A., Spargo, B. J. & Anchordoguy, T. J. ( 1988; ). Interactions of sugars with membranes. Biochim Biophys Acta 947, 367–384.[CrossRef]
    [Google Scholar]
  12. Dennis, J. J., Lafontaine, E. R. & Sokol, P. A. ( 1996; ). Identification and characterization of the tolQRA genes of Pseudomonas aeruginosa. J Bacteriol 178, 7059–7068.
    [Google Scholar]
  13. Derouiche, R., Benedetti, H., Lazzaroni, J. C., Lazdunski, C. & Lloubes, R. ( 1995; ). Protein complex within Escherichia coli inner membrane. TolA N-terminal domain interacts with TolQ and TolR proteins. J Biol Chem 270, 11078–11084.[CrossRef]
    [Google Scholar]
  14. Derouiche, R., Lloubes, R., Sasso, S., Bouteille, H., Oughideni, R., Lazdunski, C. & Loret, E. ( 1999; ). Circular dichroism and molecular modeling of the E. coli TolA periplasmic domains. Biospectroscopy 5, 189–198.[CrossRef]
    [Google Scholar]
  15. Dominguez-Bernal, G., Pucciarelli, M. G., Ramos-Morales, F., Garcia-Quintanilla, M., Cano, D. A., Casadesus, J. & Garcia-del Portillo, F. ( 2004; ). Repression of the RcsC-YojN-RcsB phosphorelay by the IgaA protein is a requisite for Salmonella virulence. Mol Microbiol 53, 1437–1449.[CrossRef]
    [Google Scholar]
  16. Dubuisson, J. F., Vianney, A. & Lazzaroni, J. C. ( 2002; ). Mutational analysis of the TolA C-terminal domain of Escherichia coli and genetic evidence for an interaction between TolA and TolB. J Bacteriol 184, 4620–4625.[CrossRef]
    [Google Scholar]
  17. Ebel, W., Vaughn, G. J., Peters, H. K., 3rd & Trempy, J. E. ( 1997; ). Inactivation of mdoH leads to increased expression of colanic acid capsular polysaccharide in Escherichia coli. J Bacteriol 179, 6858–6861.
    [Google Scholar]
  18. Fortney, K. R., Young, R. S., Bauer, M. E., Katz, B. P., Hood, A. F., Munson, R. S., Jr & Spinola, S. M. ( 2000; ). Expression of peptidoglycan-associated lipoprotein is required for virulence in the human model of Haemophilus ducreyi infection. Infect Immun 68, 6441–6448.[CrossRef]
    [Google Scholar]
  19. Francez-Charlot, A., Laugel, B., Van Gemert, A., Dubarry, N., Wiorowski, F., Castanie-Cornet, M. P., Gutierrez, C. & Cam, K. ( 2003; ). RcsCDB His-Asp phosphorelay system negatively regulates the flhDC operon in Escherichia coli. Mol Microbiol 49, 823–832.
    [Google Scholar]
  20. Germon, P., Ray, M. C., Vianney, A. & Lazzaroni, J. C. ( 2001; ). Energy-dependent conformational change in the TolA protein of Escherichia coli involves its N-terminal domain, TolQ, and TolR. J Bacteriol 183, 4110–4114.[CrossRef]
    [Google Scholar]
  21. Heilpern, A. J. & Waldor, M. K. ( 2000; ). CTXphi infection of Vibrio cholerae requires the tolQRA gene products. J Bacteriol 182, 1739–1747.[CrossRef]
    [Google Scholar]
  22. Hellman, J., Roberts, J. D., Jr, Tehan, M. M., Allaire, J. E. & Warren, H. S. ( 2002; ). Bacterial peptidoglycan-associated lipoprotein is released into the bloodstream in Gram-negative sepsis and causes inflammation and death in mice. J Biol Chem 277, 14274–14280.[CrossRef]
    [Google Scholar]
  23. Hugouvieux-Cotte-Pattat, N., Blot, N. & Reverchon, S. ( 2001; ). Identification of TogMNAB, an ABC transporter which mediates the uptake of pectic oligomers in Erwinia chrysanthemi 3937. Mol Microbiol 41, 1113–1123.
    [Google Scholar]
  24. Laemmli, U. K. ( 1970; ). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680–685.[CrossRef]
    [Google Scholar]
  25. Lazzaroni, J. C., Vianney, A., Popot, J. L., Benedetti, H., Samatey, F., Lazdunski, C., Portalier, R. & Geli, V. ( 1995; ). Transmembrane alpha-helix interactions are required for the functional assembly of the Escherichia coli Tol complex. J Mol Biol 246, 1–7.[CrossRef]
    [Google Scholar]
  26. Lazzaroni, J. C., Germon, P., Ray, M. C. & Vianney, A. ( 1999; ). The Tol proteins of Escherichia coli and their involvement in the uptake of biomolecules and outer membrane stability. FEMS Microbiol Lett 177, 191–197.[CrossRef]
    [Google Scholar]
  27. Leslie, S. B., Israeli, E., Lighthart, B., Crowe, J. H. & Crowe, L. M. ( 1995; ). Trehalose and sucrose protect both membranes and proteins in intact bacteria during drying. Appl Environ Microbiol 61, 3592–3597.
    [Google Scholar]
  28. Levengood, S. K., Beyer, W. F., Jr & Webster, R. E. ( 1991; ). TolA: a membrane protein involved in colicin uptake contains an extended helical region. Proc Natl Acad Sci U S A 88, 5939–5943.[CrossRef]
    [Google Scholar]
  29. Liang, M. D., Bagchi, A., Warren, H. S. & 7 other authors ( 2005; ). Bacterial peptidoglycan-associated lipoprotein: a naturally occurring toll-like receptor 2 agonist that is shed into serum and has synergy with lipopolysaccharide. J Infect Dis 191, 939–948.[CrossRef]
    [Google Scholar]
  30. Link, A. J., Phillips, D. & Church, G. M. ( 1997; ). Methods for generating precise deletions and insertions in the genome of wild-type Escherichia coli: application to open reading frame characterization. J Bacteriol 179, 6228–6237.
    [Google Scholar]
  31. Llamas, M. A., Ramos, J. L. & Rodriguez-Herva, J. J. ( 2000; ). Mutations in each of the tol genes of Pseudomonas putida reveal that they are critical for maintenance of outer membrane stability. J Bacteriol 182, 4764–4772.[CrossRef]
    [Google Scholar]
  32. Llamas, M. A., Rodriguez-Herva, J. J., Hancock, R. E., Bitter, W., Tommassen, J. & Ramos, J. L. ( 2003a; ). Role of Pseudomonas putida tol-oprL gene products in uptake of solutes through the cytoplasmic membrane. J Bacteriol 185, 4707–4716.[CrossRef]
    [Google Scholar]
  33. Llamas, M. A., Ramos, J. L. & Rodriguez-Herva, J. J. ( 2003b; ). Transcriptional organization of the Pseudomonas putida tol-oprL genes. J Bacteriol 185, 184–195.[CrossRef]
    [Google Scholar]
  34. Lojkowska, E., Masclaux, C., Boccara, M., Robert-Baudouy, J. & Hugouvieux-Cotte-Pattat, N. ( 1995; ). Characterization of the pelL gene encoding a novel pectate lyase of Erwinia chrysanthemi 3937. Mol Microbiol 16, 1183–1195.[CrossRef]
    [Google Scholar]
  35. Loubens, I., Debarbieux, L., Bohin, A., Lacroix, J. M. & Bohin, J. P. ( 1993; ). Homology between a genetic locus (mdoA) involved in the osmoregulated biosynthesis of periplasmic glucans in Escherichia coli and a genetic locus (hrpM) controlling pathogenicity of Pseudomonas syringae. Mol Microbiol 10, 329–340.[CrossRef]
    [Google Scholar]
  36. Meury, J. & Devilliers, G. ( 1999; ). Impairment of cell division in tolA mutants of Escherichia coli at low and high medium osmolarities. Biol Cell 91, 67–75.[CrossRef]
    [Google Scholar]
  37. Miller, J. H. ( 1992; ). A Short Course in Bacterial Genetics: a Laboratory Manual and Handbook for Escherichia coli and Related Bacteria. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  38. Molina-Hoppner, A., Doster, W., Vogel, R. F. & Ganzle, M. G. ( 2004; ). Protective effect of sucrose and sodium chloride for Lactococcus lactis during sublethal and lethal high-pressure treatments. Appl Environ Microbiol 70, 2013–2020.[CrossRef]
    [Google Scholar]
  39. Mukhopadhyay, P., Williams, J. & Mills, D. ( 1988; ). Molecular analysis of a pathogenicity locus in Pseudomonas syringae pv. syringae. J Bacteriol 170, 5479–5488.
    [Google Scholar]
  40. Muller, M. M. & Webster, R. E. ( 1997; ). Characterization of the tol-pal and cyd region of Escherichia coli K-12: transcript analysis and identification of two new proteins encoded by the cyd operon. J Bacteriol 179, 2077–2080.
    [Google Scholar]
  41. Page, F., Altabe, S., Hugouvieux-Cotte-Pattat, N., Lacroix, J. M., Robert-Baudouy, J. & Bohin, J. P. ( 2001; ). Osmoregulated periplasmic glucan synthesis is required for Erwinia chrysanthemi pathogenicity. J Bacteriol 183, 3134–3141.[CrossRef]
    [Google Scholar]
  42. Poolman, B. & Glaasker, E. ( 1998; ). Regulation of compatible solute accumulation in bacteria. Mol Microbiol 29, 397–407.[CrossRef]
    [Google Scholar]
  43. Prouty, A. M., Van Velkinburgh, J. C. & Gunn, J. S. ( 2002; ). Salmonella enterica serovar Typhimurium resistance to bile: identification and characterization of the tolQRA cluster. J Bacteriol 184, 1270–1276.[CrossRef]
    [Google Scholar]
  44. Ray, M. C., Germon, P., Vianney, A., Portalier, R. & Lazzaroni, J. C. ( 2000; ). Identification by genetic suppression of Escherichia coli TolB residues important for TolB-Pal interaction. J Bacteriol 182, 821–824.[CrossRef]
    [Google Scholar]
  45. Roeder, D. L. & Collmer, A. ( 1985; ). Marker-exchange mutagenesis of a pectate lyase isozyme gene in Erwinia chrysanthemi. J Bacteriol 164, 51–56.
    [Google Scholar]
  46. Sambrook, J., Fritsch, E. F. & Maniatis, T. ( 1989; ). Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  47. Soberon, X., Covarrubias, L. & Bolivar, F. ( 1980; ). Construction and characterization of new cloning vehicles. IV. Deletion derivatives of pBR322 and pBR325. Gene 9, 287–305.[CrossRef]
    [Google Scholar]
  48. Spinola, S. M., Hiltke, T. J., Fortney, K. & Shanks, K. L. ( 1996; ). The conserved 18 000-molecular-weight outer membrane protein of Haemophilus ducreyi has homology to PAL. Infect Immun 64, 1950–1955.
    [Google Scholar]
  49. Stout, V. & Gottesman, S. ( 1990; ). RcsB and RcsC: a two-component regulator of capsule synthesis in Escherichia coli. J Bacteriol 172, 659–669.
    [Google Scholar]
  50. Sun, T. P. & Webster, R. E. ( 1987; ). Nucleotide sequence of a gene cluster involved in entry of E colicins and single-stranded DNA of infecting filamentous bacteriophages into Escherichia coli. J Bacteriol 169, 2667–2674.
    [Google Scholar]
  51. Valentin-Hansen, P., Albrechtsen, B. & Love Larsen, J. E. ( 1986; ). DNA-protein recognition: demonstration of three genetically separated operator elements that are required for repression of the Escherichia coli deoCABD promoters by the DeoR repressor. EMBO J 5, 2015–2021.
    [Google Scholar]
  52. van Gijsegem, F., Toussaint, A. & Schoonejans, E. ( 1985; ). In vivo cloning of the pectate lyase and cellulase genes of Erwinia chrysanthemi. EMBO J 4, 787–792.
    [Google Scholar]
  53. Vianney, A., Lewin, T. M., Beyer, W. F., Jr, Lazzaroni, J. C., Portalier, R. & Webster, R. E. ( 1994; ). Membrane topology and mutational analysis of the TolQ protein of Escherichia coli required for the uptake of macromolecules and cell envelope integrity. J Bacteriol 176, 822–829.
    [Google Scholar]
  54. Vianney, A., Muller, M. M., Clavel, T., Lazzaroni, J. C., Portalier, R. & Webster, R. E. ( 1996; ). Characterization of the tol-pal region of Escherichia coli K-12: translational control of tolR expression by TolQ and identification of a new open reading frame downstream of pal encoding a periplasmic protein. J Bacteriol 178, 4031–4038.
    [Google Scholar]
  55. Walburger, A., Lazdunski, C. & Corda, Y. ( 2002; ). The Tol/Pal system function requires an interaction between the C-terminal domain of TolA and the N-terminal domain of TolB. Mol Microbiol 44, 695–708.[CrossRef]
    [Google Scholar]
  56. Webster, R. E. ( 1991; ). The tol gene products and the import of macromolecules into Escherichia coli. Mol Microbiol 5, 1005–1011.[CrossRef]
    [Google Scholar]
  57. Youderian, P., Burke, N., White, D. & Hartzell, P. ( 2003; ). Identification of genes required for adventurous gliding motility in Myxococcus xanthus with the transposable element mariner. Mol Microbiol 49, 555–570.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.28237-0
Loading
/content/journal/micro/10.1099/mic.0.28237-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error