1887

Abstract

The structure and enzymic activity of xyloglucanase Xgh74A and endoxylanase Xyn10D, components in the cellulosomes of cellulose-grown , were determined. Xyn10D is a thermostable endo-1,4--xylanase with a module composition identical to Xyn10C (CBM22-GH10-Doc). It hydrolyses xylan and mixed-linkage 1,3-1,4--glucan with a temperature optimum of 80 °C. Xyloglucanase Xgh74A contains a catalytic module of GHF74 in addition to a C-terminal dockerin module. It hydrolyses every fourth -1,4-glucan bond in the xyloglucan backbone, thus producing decorated cellotetraose units. Its low activity on CMC and lack of activity on amorphous cellulose indicates recognition of the xylosidic side chains present in xyloglucan, which is readily hydrolysed (295 U mg). The pattern of the hydrolysis products from tamarind xyloglucan resembles that of other GHF74 xyloglucan endoglucanases. The data indicate that Xgh74A and Xyn10D contribute to the degradation of the hemicelluloses xyloglucan and xylan by the cellulosome of . Xgh74A is the first xyloglucanase identified in and the only enzyme in the cellulosome that hydrolyses tamarind xyloglucan.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.28206-0
2005-10-01
2019-10-19
Loading full text...

Full text loading...

/deliver/fulltext/micro/151/10/3395.html?itemId=/content/journal/micro/10.1099/mic.0.28206-0&mimeType=html&fmt=ahah

References

  1. Bayer, E. A., Shoham, Y. & Lamed, R. ( 2000; ). Cellulose-decomposing bacteria and their enzyme systems. In The Prokaryotes: an Evolving Electronic Resource for the Microbiological Community, 3rd edn. Edited by M. Dworkin, S. Falkow, E. Rosenberg, K.-H. Schleifer & E. Stackebrandt. New York: Springer.
  2. Blum, D. L., Kataeva, I. A., Li, X. L. & Ljungdahl, L. G. ( 2000; ). Feruloyl esterase activity of the Clostridium thermocellum cellulosome can be attributed to previously unknown domains of XynY and XynZ. J Bacteriol 182, 1346–1351.[CrossRef]
    [Google Scholar]
  3. Charnock, S. J., Bolam, D. N., Turkenburg, J. P., Gilbert, H. J., Ferreira, L. M., Davies, G. J. & Fontes, C. M. ( 2000; ). The X6 “thermostabilizing” domains of xylanases are carbohydrate-binding modules: structure and biochemistry of the Clostridium thermocellum X6b domain. Biochemistry 39, 5013–5021.[CrossRef]
    [Google Scholar]
  4. Chhabra, S. R. & Kelly, R. M. ( 2002; ). Biochemical characterization of Thermotoga maritima endoglucanase Cel74 with and without a carbohydrate binding module (CBM). FEBS Lett 531, 375–380.[CrossRef]
    [Google Scholar]
  5. Demain, A. L., Newcomb, M. & Wu, J. H. D. ( 2005; ). Cellulase, clostridia, and ethanol. Microbiol Mol Biol Rev 69, 124–154.[CrossRef]
    [Google Scholar]
  6. Doi, R. H. & Kosugi, A. ( 2004; ). Cellulosomes: plant-cell-wall-degrading enzyme complexes. Nat Rev Microbiol 2, 541–551.[CrossRef]
    [Google Scholar]
  7. Frommberger, M., Schmitt-Kopplin, P., Ping, G., Frisch, H., Schmid, M., Zhang, Y., Hartmann, A. & Kettrup, A. ( 2004; ). A simple and robust setup for on-column sample preconcentration – nano liquid chromatography-electrospray ionization mass spectrometry for the analysis of N-acylhomoserine lactones. Anal Bioanal Chem 378, 1014–1020.[CrossRef]
    [Google Scholar]
  8. Fry, S. C., York, W. S., Albersheim, P. & 13 other authors ( 1993; ). An unambiguous nomenclature for xyloglucan-derived oligosaccharides. Physiol Plant 89, 1–3.[CrossRef]
    [Google Scholar]
  9. Grépinet, O., Chebrou, M. C. & Béguin, P. ( 1988; ). Purification of Clostridium thermocellum xylanase Z expressed in Escherichia coli and identification of the corresponding product in the culture medium of C. thermocellum. J Bacteriol 170, 4576–4581.
    [Google Scholar]
  10. Hallstead, J. R., Vercoe, P. E., Gilbert, H. J., Davidson, K. & Hazlewood, G. P. ( 1999; ). A family 26 mannanase produced by Clostridium thermocellum as a component of the cellulosome contains a domain which is conserved in mannanases from anaerobic fungi. Microbiology 145, 3101–3108.
    [Google Scholar]
  11. Hasper, A. A., Dekkers, E., van Mil, M., van de Vondervoort, P. J. I. & de Graaf, L. H. ( 2002; ). EglC, a new endoglucanase from Aspergillus niger with major activity towards xyloglucan. Appl Environ Microbiol 68, 1556–1560.[CrossRef]
    [Google Scholar]
  12. Hayashi, H., Takagi, K.-I., Fukumura, M., Kimura, T., Karita, S., Sakka, K. & Ohmiya, K. ( 1997; ). Sequence of xynC and properties of XynC, a major component of the Clostridium thermocellum cellulosome. J Bacteriol 179, 4246–4253.
    [Google Scholar]
  13. Hayashi, H., Takehara, M., Hattori, T., Kimura, T., Karita, S., Sakka, K. & Ohmiya, K. ( 1999; ). Nucleotide sequences of two contiguous and highly homologous xylanases genes xynA and xynB and characterization of XynA from Clostridium thermocellum. Appl Microbiol Biotechnol 51, 348–357.[CrossRef]
    [Google Scholar]
  14. Irwin, D. C., Cheng, M., Xiang, B., Rose, J. K. & Wilson, D. B. ( 2003; ). Cloning, expression and characterization of a family-74 xyloglucanase from Thermobifida fusca. Eur J Biochem 270, 3083–3091.[CrossRef]
    [Google Scholar]
  15. Johnson, E. A., Madia, A. & Demain, A. L. ( 1982; ). Chemically defined minimal medium for growth of the anaerobic cellulolytic thermophile Clostridium thermocellum. Appl Environ Microbiol 41, 1060–1062.
    [Google Scholar]
  16. Kurokawa, J., Hemjinda, E., Arai, T., Karita, S., Kimura, T., Sakka, K. & Ohmiya, K. ( 2001; ). Sequence of the Clostridium thermocellum mannanase gene man26B and characterization of the translated product. Biosci Biotechnol Biochem 65, 548–554.[CrossRef]
    [Google Scholar]
  17. Matuschek, M., Sahm, K., Zibat, A. & Bahl, H. ( 1996; ). Characterization of genes from Thermoanaerobacterium thermosulfurigenes EM1 that encode two glycosyl hydrolases with conserved S-layer-like domains. Mol Gen Genet 252, 493–496.
    [Google Scholar]
  18. Morag, E., Bayer, E. A. & Lamed, R. ( 1992; ). Affinity digestion for the near-total recovery of purified cellulosome from Clostridium thermocellum. Enzyme Microb Technol 14, 289–292.[CrossRef]
    [Google Scholar]
  19. Nolling, J., Breton, G., Omelchenko, M. V. & 16 other authors ( 2001; ). Genome sequence and comparative analysis of the solvent-producing bacterium Clostridium acetobutylicum. J Bacteriol 183, 4823–4838.[CrossRef]
    [Google Scholar]
  20. Schmitt-Kopplin, P. & Kettrup, A. ( 2003; ). Capillary electrophoresis–electrospray ionization–mass spectrometry for the characterization of natural organic matter: an evaluation with free flow electrophoresis-off-line flow injection electrospray ionization-mass spectrometry. Electrophoresis 24, 3057–3066.[CrossRef]
    [Google Scholar]
  21. Schwarz, W. H. ( 2001; ). The cellulosome and cellulose degradation by anaerobic bacteria. Appl Microbiol Biotechnol 56, 634–649.[CrossRef]
    [Google Scholar]
  22. Schwarz, W. H., Bronnenmeier, K., Gräbnitz, F. & Staudenbauer, W. L. ( 1987; ). Activity staining of cellulases in polyacrylamide gels containing mixed linkage β-glucans. Anal Biochem 164, 72–77.[CrossRef]
    [Google Scholar]
  23. Schwarz, W. H., Zverlov, V. V. & Bahl, H. ( 2004; ). Extracellular glycosyl hydrolases from clostridia. Adv Appl Microbiol 56, 215–261.
    [Google Scholar]
  24. Shoham, Y., Lamed, R. & Bayer, E. A. ( 1999; ). The cellulosome concept as an efficient microbial strategy for the degradation of insoluble polysaccharides. Trends Microbiol 7, 275–281.[CrossRef]
    [Google Scholar]
  25. Whitney, S. E. C., Brigham, J. E., Darke, A. H., Reid, J. S. G. & Gidley, M. J. ( 1995; ). In vitro assembly of cellulose/xyloglucan networks: ultrastructure and molecular aspects. Plant J 8, 491–504.[CrossRef]
    [Google Scholar]
  26. Wood, T. M. & Bhat, K. M. ( 1988; ). Methods for measuring cellulase activities. Methods Enzymol 160, 87–112.
    [Google Scholar]
  27. Yaoi, Y. & Mitsuishi, Y. ( 2002; ). Purification, characterization, cloning, and expression of a novel xyloglucan-specific glycosidase, oligoxyloglucan reducing end-specific cellobiohydrolase. J Biol Chem 277, 48276–48281.[CrossRef]
    [Google Scholar]
  28. Yaoi, K. & Mitsuishi, Y. ( 2004; ). Purification, characterization, cDNA cloning, and expression of a xyloglucan endoglucanase from Geotrichum sp. M128. FEBS Lett 560, 45–50.[CrossRef]
    [Google Scholar]
  29. Yaoi, K., Kondo, H., Noro, N., Suzuki, M., Tsuda, S. & Mitsuishi, Y. ( 2004; ). Tandem repeat of a seven-bladed β-propeller domain in oligoxyloglucan reducing-end-specific cellobiohydrolase. Structure 12, 1209–1217.[CrossRef]
    [Google Scholar]
  30. York, W. S., Harvey, L. K., Guillen, R., Albersheim, P. & Darvill, A. G. ( 1993; ). Structural analysis of tamarind seed xyloglucan oligosaccharides using β-galactosidase digestion and spectroscopic methods. Carbohydr Res 248, 285–301.[CrossRef]
    [Google Scholar]
  31. Zverlov, V. V., Fuchs, K. P., Schwarz, W. H. & Velikodvorskaya, G. A. (1994; ). Purification and cellulosomal localization of Clostridium thermocellum mixed linkage β-glucanase LicB (1,3-1,4-β-d-glucanase). Biotechnol Lett 16, 29–34.[CrossRef]
    [Google Scholar]
  32. Zverlov, V. V., Fuchs, K.-P. & Schwarz, W. H. ( 2002; ). Chi18A, the endochitinase in the cellulosome of the thermophilic, cellulolytic bacterium Clostridium thermocellum. Appl Environ Microbiol 68, 3176–3179.[CrossRef]
    [Google Scholar]
  33. Zverlov, V. V., Kellermann, J. & Schwarz, W. H. ( 2005; ). Functional subgenomics of Clostridium thermocellum cellulosomal genes: identification of the major catalytic components in the extracellular complex and detection of three new enzymes. Proteomics 5 (in press). doi:10.1002/pmic.200401199
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.28206-0
Loading
/content/journal/micro/10.1099/mic.0.28206-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error