1887

Abstract

Changes in the cellular envelope are major physiological adaptations that occur when micro-organisms encounter extreme environmental conditions. An appropriate degree of membrane fluidity is crucial for survival, and alteration of membrane lipids is an essential adaptive response. Emerging data suggest that microbial cells may recognize alterations in their membrane viscosity resulting from certain environmental changes as a trigger for adaptive cellular responses. In , the quorum-sensing (QS) system involves a complex regulatory circuitry that coordinates the expression of genes according to a critical population density. Interestingly, it has been shown that the QS system of can also be activated by nutritional stress, independently of the cell density, and therefore may be part of a more general adaptive response to stressful environmental conditions. In order to examine the proposed link between membrane properties and stress signalling, the effects of genetically engineered alterations of the membrane phospholipid composition of PAO1 on the activation of the stringent response and the QS system were examined. The gene encoding a functional homologue of PlsC, an enzyme that catalyses the second step of the phospholipid biosynthesis pathway, was identified and disrupted. Inactivation of altered the fatty acid profile of phospholipids and the membrane properties, resulting in decreased membrane fluidity. This resulted in a premature production of the QS signals -butanoyl- and -hexanoyl-homoserine lactone (C4-HSL and C6-HSL) and a repression of 2-heptyl-3-hydroxy-4-quinolone (PQS) synthesis at later growth phases. The effects on C4- and C6-HSL depended upon the expression of , encoding the (p)ppGpp alarmone synthase, which was increased in the mutant. Together, the findings support the concept that alterations in membrane properties can act as a trigger for stress-related gene expression.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.28185-0
2005-08-01
2020-08-03
Loading full text...

Full text loading...

/deliver/fulltext/micro/151/8/mic1512529.html?itemId=/content/journal/micro/10.1099/mic.0.28185-0&mimeType=html&fmt=ahah

References

  1. Albanesi D., Mansilla M. C., De Mendoza D. 2004; The membrane fluidity sensor DesK of Bacillus subtilis controls the signal decay of its cognate response regulator. J Bacteriol186:2655–2663[CrossRef]
    [Google Scholar]
  2. Athenstaedt K., Daum G. 1999; Phosphatidic acid, a key intermediate in lipid metabolism. Eur J Biochem266:1–16[CrossRef]
    [Google Scholar]
  3. Beatson S. A., Whitchurch C. B., Semmler A. B., Mattick J. S. 2002; Quorum sensing is not required for twitching motility in. Pseudomonas aeruginosa. J Bacteriol184:3598–3604[CrossRef]
    [Google Scholar]
  4. Calfee M. W., Coleman J. P., Pesci E. C. 2001; Interference with Pseudomonas quinolone signal synthesis inhibits virulence factor expression by. Pseudomonas aeruginosa. Proc Natl Acad Sci U S A98:11633–11637[CrossRef]
    [Google Scholar]
  5. Cámara M., Williams P., Hardman A. 2002; Controlling infection by tuning in and turning down the volume of bacterial small-talk. Lancet Infect Dis2:667–676[CrossRef]
    [Google Scholar]
  6. Cashel M., Gentry D. R., Hernandez V. J., Vinella D. 1996; The stringent response. In Escherichia coli and Salmonella: Cellular and Molecular Biology, 2nd edn. pp1458–1496 Edited by Neidhardt F. C., Curtiss R. III, Ingraham J. L., Lin E. C. C., Low K. B., Magasanik B., Reznikoff W., Riley M., Shaechter M., Umbarger A. E.. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  7. Coleman J. 1990; Characterization of Escherichia coli cells deficient in 1-acyl-sn-glycerol-3-phosphate acyltransferase activity. J Biol Chem265:17215–17221
    [Google Scholar]
  8. Collier D. N., Anderson L., McKnight S. L., Noah T. L., Knowles M., Boucher R., Schwab U., Gilligan P., Pesci E. C. 2002; A bacterial cell to cell signal in the lungs of cystic fibrosis patients. FEMS Microbiol Lett215:41–46[CrossRef]
    [Google Scholar]
  9. Cornelis P., Anjaiah V., Koedam N., Delfosse P., Jacques P., Thonart P., Neirinckx L. 1992; Stability, frequency and multiplicity of transposon insertions in the pyoverdine region in the chromosomes of different fluorescent pseudomonads. J Gen Microbiol138:1337–1343[CrossRef]
    [Google Scholar]
  10. Cronan J. E., Rock C. O. 1996; Biosynthesis of membrane lipids. In Escherichia coli and Salmonella typhimurium: Cellular and Molecular Biology pp612–636 Edited by Neidhardt F.. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  11. D'Argenio D. A., Calfee M. W., Rainey P. B., Pesci E. C. 2002; Autolysis and autoaggregation in Pseudomonas aeruginosa colony morphology mutants. J Bacteriol184:6481–6489[CrossRef]
    [Google Scholar]
  12. de Mendoza D., Klages Ulrich A., Cronan J. E. 1983; Thermal regulation of membrane fluidity in Escherichia coli. Effects of overproduction of beta-ketoacyl-acyl carrier protein synthase I. J Biol Chem258:2098–2101
    [Google Scholar]
  13. Déziel E., Lepine F., Milot S., He J., Mindrinos M. N., Tompkins R. G., Rahme L. G. 2004; Analysis of Pseudomonas aeruginosa 4-hydroxy-2-alkylquinolines (HAQs) reveals a role for 4-hydroxy-2-heptylquinoline in cell-to-cell communication. Proc Natl Acad Sci U S A101:1339–1344[CrossRef]
    [Google Scholar]
  14. Diefenbach R., Heipieper H. J., Keweloh H. 1992; The conversion of cis into trans unsaturated fatty acids in Pseudomonas putida P8: evidence for a role in the regulation of membrane fluidity. Appl Microbiol Biotechnol38:382–387
    [Google Scholar]
  15. Diggle S. P., Winzer K., Lazdunski A., Williams P., Camara M. 2002; Advancing the quorum in Pseudomonas aeruginosa: MvaT and the regulation of N-acylhomoserine lactone production and virulence gene expression. J Bacteriol184:2576–2586[CrossRef]
    [Google Scholar]
  16. Diggle S. P., Winzer K., Chhabra S. R., Worrall K. E., Camara M., Williams P. 2003; The Pseudomonas aeruginosa quinolone signal molecule overcomes the cell density-dependency of the quorum sensing hierarchy, regulates rhl-dependent genes at the onset of stationary phase and can be produced in the absence of LasR. Mol Microbiol50:29–43[CrossRef]
    [Google Scholar]
  17. Erickson D. L., Lines J. L., Pesci E. C., Venturi V., Storey D. G. 2004; Pseudomonas aeruginosa relA contributes to virulence in Drosophila melanogaster. Infect Immun72:5638–5645[CrossRef]
    [Google Scholar]
  18. Folch J., Lees M., Sloane Stanley G. H. 1957; A simple method for the isolation and purification of total lipids from animal tissues. J Biol Chem226:497–509
    [Google Scholar]
  19. Gallagher L. A., Manoil C. 2001; Pseudomonas aeruginosa PAO1 kills Caenorhabditis elegans. by cyanide poisoning. J Bacteriol183:6207–6214[CrossRef]
    [Google Scholar]
  20. Gallagher L. A., McKnight S. L., Kuznetsova M. S., Pesci E. C., Manoil C. 2002; Functions required for extracellular quinolone signaling by. Pseudomonas aeruginosa. J Bacteriol184:6472–6480[CrossRef]
    [Google Scholar]
  21. Goldberg J. 2000; Pseudomonas, global bacteria. Trends Microbiol8:55–57[CrossRef]
    [Google Scholar]
  22. Guina T., Wu M., Miller S. I. 7 other authors 2003; Proteomic analysis of Pseudomonas aeruginosa grown under magnesium limitation. J Am Soc Mass Spectrom14:742–751[CrossRef]
    [Google Scholar]
  23. Hoang T. T., Schweizer H. P. 1999; Characterization of Pseudomonas aeruginosa enoyl-acyl carrier protein reductase (FabI): a target for the antimicrobial triclosan and its role in acylated homoserine lactone synthesis. J Bacteriol181:5489–5497
    [Google Scholar]
  24. Ichihara K., Shibahara A., Yamamoto K., Nakayama T. 1996; An improved method for rapid analysis of the fatty acids of glycerolipids. Lipids31:535–539[CrossRef]
    [Google Scholar]
  25. Inoue K., Matsuzaki H., Matsumoto K., Shibuya I. 1997; Unbalanced membrane phospholipid compositions affect transcriptional expression of certain regulatory genes in. Escherichia coli. J Bacteriol179:2872–2878
    [Google Scholar]
  26. Jacobs M. A., Alwood A., Thaipisuttikul I. 12 other authors 2003; Comprehensive transposon mutant library of Pseudomonas aeruginosa. Proc Natl Acad Sci U S A100:14339–14344[CrossRef]
    [Google Scholar]
  27. Kovach M. E., Elzer P. H., Hill D. S., Robertson G. T., Farris M. A., Roop R. M., Peterson K. M. 1995; Four new derivatives of the broad-host-range cloning vector pBBR1MCS, carrying different antibiotic-resistance cassettes. Gene166:175–176[CrossRef]
    [Google Scholar]
  28. Lai H. C., Soo P. C., Wei J. R. 7 other authors 2005; The RssAB two-component signal transduction system in Serratia marcescens regulates swarming motility and cell envelope architecture in response to exogenous saturated fatty acids. J Bacteriol187:3407–3414[CrossRef]
    [Google Scholar]
  29. Lewenza S., Falsafi R. K., Winsor G., Gooderham W. J., McPhee J. B., Brinkman F. S., Hancock R. E. 2005; Construction of a mini-Tn5-luxCDABE mutant library in Pseudomonas aeruginosa PAO1: a tool for identifying differentially regulated genes. Genome Res15:583–589[CrossRef]
    [Google Scholar]
  30. Liaw S. J., Lai H. C., Wang W. B. 2004; Modulation of swarming and virulence by fatty acids through the RsbA protein in Proteus mirabilis. Infect Immun72:6836–6845[CrossRef]
    [Google Scholar]
  31. Los D. A., Murata N. 2004; Membrane fluidity and its roles in the perception of environmental signals. Biochim Biophys Acta 1666;142–157[CrossRef]
    [Google Scholar]
  32. McGrath S., Wade D. S., Pesci E. C. 2004; Dueling quorum sensing systems in Pseudomonas aeruginosa control the production of the Pseudomonas quinolone signal (PQS. FEMS Microbiol Lett230:27–34[CrossRef]
    [Google Scholar]
  33. McKnight S. L., Iglewski B. H., Pesci E. C. 2000; The Pseudomonas quinolone signal regulates. rhl quorum sensing in Pseudomonas aeruginosa. J Bacteriol182:2702–2708[CrossRef]
    [Google Scholar]
  34. Mikami K., Murata N. 2003; Membrane fluidity and the perception of environmental signals in cyanobacteria and plants. Prog Lipid Res42:527–543[CrossRef]
    [Google Scholar]
  35. Miller J. H. 1972; Experiments in Molecular Genetics Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  36. Pearson J. P., Van Delden C., Iglewski B. H. 1999; Active efflux and diffusion are involved in transport of Pseudomonas aeruginosa cell-to-cell signals. J Bacteriol181:1203–1210
    [Google Scholar]
  37. Perron K., Comte R., Van Delden C. 2005; DksA represses ribosomal gene transcription in Pseudomonas aeruginosa by interacting with RNA polymerase on ribosomal promoters. Mol Microbiol56:1087–1102[CrossRef]
    [Google Scholar]
  38. Pesci E. C., Milbank J. B., Pearson J. P., McKnight S., Kende A. S., Greenberg E. P., Iglewski B. H. 1999; Quinolone signaling in the cell-to-cell communication system of. Pseudomonas aeruginosa. Proc Natl Acad Sci U S A96:11229–11234[CrossRef]
    [Google Scholar]
  39. Ravn L., Christensen A. B., Molin S., Givskov M., Gram L. 2001; Methods for detecting acylated homoserine lactones produced by Gram-negative bacteria and their application in studies of AHL-production kinetics. J Microbiol Methods44:239–251[CrossRef]
    [Google Scholar]
  40. Rilfors L., Lindblom G., Christiansson M, Wieslander Å.. 1984; Lipid bilayer stability in biological membranes. In Biomembranesvol. 12 pp205–245 Edited by Kates M., Manson L. A.. New York: Plenum;
    [Google Scholar]
  41. Rumbaugh K. P., Griswold J. A., Hamood A. N. 2000; The role of quorum sensing in the. in vivo virulence of Pseudomonas aeruginosa. Microbes Infect2:1721–1731[CrossRef]
    [Google Scholar]
  42. Russell N. J. 1989; Functions of lipids: structural roles in membrane functions. In Microbial Lipids pp279–365 Edited by Ratledge C., Wilkinson S. G.. Canada: Academic Press; Toronto:
    [Google Scholar]
  43. Savli H., Karadenizli A., Kolayli F., Gundes S., Ozbek U., Vahaboglu H. 2003; Expression stability of six housekeeping genes: a proposal for resistance gene quantification studies of Pseudomonas aeruginosa by real-time quantitative RT-PCR. J Med Microbiol52:403–408[CrossRef]
    [Google Scholar]
  44. Schujman G. E., Paoletti L., Grossman A. D, de Mendoza D. 2003; FapR, a bacterial transcription factor involved in global regulation of membrane lipid biosynthesis. Dev Cell4:663–672[CrossRef]
    [Google Scholar]
  45. Shaw P. D., Ping G., Daly S. L., Cha C., Cronan J. E. Jr, Rinehart K. L., Farrand S. K. 1997; Detecting and characterizing N-acyl-homoserine lactone signal molecules by thin-layer chromatography. Proc Natl Acad Sci U S A94:6036–6041[CrossRef]
    [Google Scholar]
  46. Shih G. C., Kahler C. M., Swartley J. S., Rahman M. M., Coleman J., Carlson R. W., Stephens D. S. 1999; Multiple lysophosphatidic acid acyltransferases in Neisseria meningitidis. Mol Microbiol32:942–952[CrossRef]
    [Google Scholar]
  47. Spaink H. P., Okker R. J. H., Wijffelman C. A., Pees E., Lugtenberg B. J. J. 1987; Promoters in the nodulation regions of the Rhizobium leguminosarum Sym plasmid pRL1JL. Plant Mol Biol9:27–39[CrossRef]
    [Google Scholar]
  48. Stover C. K., Pham X. Q., Erwin A. L. 28 other authors 2000; Complete genome sequence of Pseudomonas aeruginosa PAO1, an opportunistic pathogen. Nature406:959–964[CrossRef]
    [Google Scholar]
  49. Van Delden C., Comte R., Bally A. M. 2001; Stringent response activates quorum sensing and modulates cell density-dependent gene expression in. Pseudomonas aeruginosa. J Bacteriol183:5376–5384[CrossRef]
    [Google Scholar]
  50. Van Waasbergen L. G., Dolganov N., Grossman A. R. 2002; nblS, a gene involved in controlling photosynthesis-related gene expression during high light and nutrient stress in. Synechococcus elongatus PCC 7942. J Bacteriol184:2481–2490[CrossRef]
    [Google Scholar]
  51. Vincent M., England L. S., Trevors J. T. 2004; Cytoplasmic membrane polarization in Gram-positive and Gram-negative bacteria grown in the absence and presence of tetracycline. Biochim Biophys Acta1672:131–134[CrossRef]
    [Google Scholar]
  52. Weissenmayer B., Gao J. L., Lopez-Lara I. M., Geiger O. 2002; Identification of a gene required for the biosynthesis of ornithine-derived lipids. Mol Microbiol45:721–733[CrossRef]
    [Google Scholar]
  53. White D. C., Tucker A. N. 1969; Phospholipid metabolism during bacterial growth. J Lipid Res10:220–233
    [Google Scholar]
  54. Wilderman P. J., Vasil A. I., Martin W. E., Murphy R. C., Vasil M. L. 2002; Pseudomonas aeruginosa synthesizes phosphatidylcholine by use of the phosphatidylcholine synthase pathway. J Bacteriol184:4792–4799[CrossRef]
    [Google Scholar]
  55. Winzer K., Williams P. 2001; Quorum sensing and the regulation of virulence gene expression in pathogenic bacteria. Int J Med Microbiol291:131–143[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.28185-0
Loading
/content/journal/micro/10.1099/mic.0.28185-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error