1887

Abstract

uses phase variation (PV) to modulate the activity of its defence systems against phage infection. The PV of the restriction–modification (R-M) system HindI, the main defence system against phage infection and incoming chromosomal and phage DNA in Rd, is driven by changes of the pentanucleotide repeat tract within the coding sequence of the gene and is influenced by lack of Dam methylation. Phase-variable resistance/sensitivity to phage infection correlates with changes in lipooligosaccharide (LOS) structure and occurs by slippage of tetranucleotide repeats within the gene , coding for a step in the biosynthesis of LOS. The lack of Dam activity destabilizes the tetranuclotide (5′-CAAT) repeat tract and increases the frequency of switching from sensitivity to resistance to phage infection more than in the opposite direction. The PV of the gene does not influence resistance or sensitivity to phage infection. Insertional inactivation of , but not or , leads to resistance to phage infection and to the same structure of the LOS as observed among phase-variable phage-resistant variants. This indicates that in the Rd LOS only the first two sugars (Glc-Gal) extending from the third heptose are part of bacterial phage receptors.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.28184-0
2005-10-01
2024-04-25
Loading full text...

Full text loading...

/deliver/fulltext/micro/151/10/3361.html?itemId=/content/journal/micro/10.1099/mic.0.28184-0&mimeType=html&fmt=ahah

References

  1. Alexander H. L., Richardson A. R., Stojiljkovic I. 2004; Natural transformation and phase variation modulation in Neisseria meningitidis . Mol Microbiol 52:771–783 [CrossRef]
    [Google Scholar]
  2. Barcak G. J., Chandler M. S., Redfield R. J., Tomb J. F. 1991; Genetic systems in Haemophilus influenzae . Methods Enzymol 204:321–342
    [Google Scholar]
  3. Bayliss C. D., Field D., Moxon E. R. 2001; The simple sequence contingency loci of Haemophilus influenzae and Neisseria meningitidis . J Clin Invest 107:657–662 [CrossRef]
    [Google Scholar]
  4. Bayliss C. D., van de Ven T., Moxon E. R. 2002; Mutations in pol I but not mut SLH destabilize Haemophilus influenzae tetranucleotide repeats. EMBO J 21:1465–1476 [CrossRef]
    [Google Scholar]
  5. Bayliss C. D., Sweetman W. A., Moxon E. R. 2004; Mutations in Haemophilus influenzae mismatch repair genes increase mutation rates of dinucleotide repeat tracts but not dinucleotide repeat-driven pilin phase variation rates. J Bacteriol 186:2928–2935 [CrossRef]
    [Google Scholar]
  6. Beattie K. L., Setlow J. K. 1971; Transformation-defective strains of Haemophilus influenzae . Nat New Biol 231:177–179 [CrossRef]
    [Google Scholar]
  7. Bucci C., Lavitola A., Salvatore P., Del Giudice L., Massardo D. R., Bruni C. R., Alifano P. 1999; Hypermutation in pathogenic bacteria: frequent phase variation in meningococci is a phenotypic trait of a specialized mutator biotype. Mol Cell 3:435–445 [CrossRef]
    [Google Scholar]
  8. De Bolle X., Bayliss C. D., Field D., van de Ven T., Saunders N. J., Hood D. W., Moxon E. R. 2000; The length of a tetranucleotide repeat tract in Haemophilus influenzae determines the phase variation rate of a gene with homology to type III DNA methyltransferases. Mol Microbiol 35:211–222 [CrossRef]
    [Google Scholar]
  9. Fleischmann R. D., Adams M. D., White O. & 37 other authors; 1995; Whole-genome random sequencing and assembly of Haemophilus influenzae Rd. Science 269:496–512 [CrossRef]
    [Google Scholar]
  10. Glover S. W., Piekarowicz A. 1972; Host specificity of DNA in Haemophilus influenzae : restriction and modification in strain Rd. Biochem Biophys Res Commun 46:1610–1617 [CrossRef]
    [Google Scholar]
  11. Hitchcock P. C. J., Brown T. M. 1983; Morphological heterogeneity among Salmonella lipopolysaccharide hemotypes in silver stained polyacrylamide gels. J Bacteriol 154:269–277
    [Google Scholar]
  12. Hood D. W., Moxon E. R. 1999; Lipopolysaccharide phase variation in Haemophilus and Neisseria . In Endotoxin in Health and Disease pp. 39–54 Edited by Brade H., Opal S., Morrison D. New York: Marcel Dekker;
    [Google Scholar]
  13. Hood D. W., Deadman M. E., Allen T. & 7 other authors (1996a). Use of the complete genome sequence information of Haemophilus influenzae strain Rd to investigate lipopolysaccharide biosynthesis. Mol Microbiol 22:951–965 [CrossRef]
    [Google Scholar]
  14. Hood D. W., Deadman M. E., Jennings M. P., Bisceric M., Fleischmann R. D., Venter J. C., Moxon E. R. 1996b; DNA repeats identify novel virulence genes in Haemophilus influenzae . Proc Natl Acad Sci U S A 93:11121–11125 [CrossRef]
    [Google Scholar]
  15. Hood D. W., Cox A. D., Wakarchuk W. W. 7 other authors 2001; Genetic basis for expression of the major globotetraose-containing lipopolysaccharide from H. influenzae strain Rd (RM118). Glycobiology 11:957–967 [CrossRef]
    [Google Scholar]
  16. Hood D. W., Deadman M. E., Cox A. D., Makepeace K., Martin A., Richards J. C., Moxon E. R. 2004; Three genes, lgtF , lic2C and lpsA , have a primary role in determining the pattern of oligosaccharide extension from the inner core of Haemophilus influenzae LPS. Microbiology 150:2089–2097 [CrossRef]
    [Google Scholar]
  17. Jones D. M., Borrow R., Fox A. J., Gray S., Cartwright K. A., Poolman J. T. 1992; The lipopolysaccharide immunotype as a virulence determinant in Neisseria gonorrhoeae . Microb Pathog 13:219–224 [CrossRef]
    [Google Scholar]
  18. Kokoska R. J., Stefanovic L., Tran H. T., Resnick M. A., Gordenin D. A., Petes T. D. 1998; Destabilization of yeast micro- and minisatellite DNA sequences by mutations affecting a nuclease involved in Okazaki fragment processing ( rad27 ) and DNA polymerase delta ( pol3-t ). Mol Cell Biol 18:2779–2788
    [Google Scholar]
  19. Kutter E., Raya R., Carlson K. 2005; Molecular mechanisms of phage infection. In Bacteriophages: Biology and Applications pp. 223–265 Edited by Kutter E., Sulakvelidze A. Boca Raton, FL: CRC Press;
    [Google Scholar]
  20. Lea D. E., Coulson C. A. 1949; The distribution of the numbers of mutants in bacterial populations. J Genet 49:264–285 [CrossRef]
    [Google Scholar]
  21. Mayer M. P. 1995; A new set of useful cloning and expression vectors derived from pBlueScript. Gene 163:41–46 [CrossRef]
    [Google Scholar]
  22. Moxon E. R., Rainey P. B., Nowak M. A., Lenski R. 1994; Adaptive evolution of highly mutable loci in pathogenic bacteria. Curr Biol 4:24–33 [CrossRef]
    [Google Scholar]
  23. Murray N. E. 2000; Type I restriction systems: sophisticated molecular machines (a legacy of Bertani and Weigle). Microbiol Mol Biol Rev 64:412–434 [CrossRef]
    [Google Scholar]
  24. Nesper J., Kapfhammer D., Klose K. E., Merkert H., Reidl J. 2000; Characterization of Vibrio cholerae O1 antigen as the bacteriophage K139 receptor and identification of IS 1004 insertions aborting O1 antigen biosynthesis. J Bacteriol 182:5097–5104 [CrossRef]
    [Google Scholar]
  25. Patrick C. C., Kimura A., Jackson M. A., Hermansstofer L., Hood A., McCracken G. H., Hansen E. J. 1987; Antigenic characterization of the oligosaccharide portion of the lipooligosaccharide of nontypable Haemophilus influenzae . Infect Immun 55:2902–2911
    [Google Scholar]
  26. Piekarowicz A., Brzeziński R, Kauc L. 1974; Host specificity of DNA in Haemophilus influenzae : the in vivo action of the restriction endonucleases on phage and bacterial DNA. Acta Microbiol Pol A 27:51–65
    [Google Scholar]
  27. Risberg A., Masoud H., Martin A., Richards J. C., Moxon E. R., Schweda E. K. H. 1999; Structural analysis of the lipopolysaccharide epitopes expressed by a capsular deficient strain of Haemophilus influenzae Rd. Eur J Biochem 261:171–180 [CrossRef]
    [Google Scholar]
  28. Roberts R. J., Macelis D. 2001; REBASE – restriction enzymes and methylases. Nucleic Acids Res 29:268–269 [CrossRef]
    [Google Scholar]
  29. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning: a Laboratory Manual Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  30. Schagger H, von Jagow G. 1987; Tricine-sodium dodecyl sulfate-poyacrylamide gel electrophoresis for the proteins in the range from 1 to 100 kDa. Anal Biochem 166:368–379 [CrossRef]
    [Google Scholar]
  31. Srikhanta Y. N., Maguire T. L., Stacey K. J., Grimmond S. M., Jennings M. P. 2005; The phasevarion: a genetic system controlling coordinated, random switching of expression of multiple genes. Proc Natl Acad Sci U S A 102:5547–5551 [CrossRef]
    [Google Scholar]
  32. Tsai C. M., Frasch C. E. 1982; A sensitive silver stain for detecting lipopolysaccharides in polyacrylamide gels. Anal Biochem 119:115–119 [CrossRef]
    [Google Scholar]
  33. Van Belkum A., Scherer S., van Leeuwen W., Willemse D., van Alphen L., Verbrugh H. 1997; Variable number of tandem repeats in clinical strains of Haemophilus influenzae . Infect Immun 65:5017–5027
    [Google Scholar]
  34. Weiser J. N., Love J. M., Moxon E. R. 1989; The molecular mechanism of Haemophilus influenzae lipopolysaccharide epitopes. Cell 59:657–665 [CrossRef]
    [Google Scholar]
  35. Zaleski P., Piekarowicz A. 2004; Characterization of a dam mutant of Haemophilus influenzae Rd. Microbiology 150:3773–3781 [CrossRef]
    [Google Scholar]
  36. Zamze S. E., Moxon E. R. 1987; Composition of the lipopolysaccharide from different capsular serotype strains of Haemophilus influenzae . J Gen Microbiol 133:1443–1451
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.28184-0
Loading
/content/journal/micro/10.1099/mic.0.28184-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error