1887
Preview this article:
Zoom in
Zoomout

Genome update: prediction of membrane proteins in prokaryotic genomes, Page 1 of 1

| /docserver/preview/fulltext/micro/151/7/mic1512119-1.gif

There is no abstract available for this article.
Use the preview function to the left.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.28181-0
2005-07-01
2020-10-25
Loading full text...

Full text loading...

/deliver/fulltext/micro/151/7/mic1512119.html?itemId=/content/journal/micro/10.1099/mic.0.28181-0&mimeType=html&fmt=ahah

References

  1. Bagos P. G., Liakopoulos T. D., Spyropoulos I. C., Hamodrakas S. J. 2004; pred-tmbb: a web server for predicting the topology of beta-barrel outer membrane proteins. Nucleic Acids Res32:W400–W404[CrossRef]
    [Google Scholar]
  2. Berven F. S., Flikka K., Jensen H. B., Eidhammer I. 2004; bomp: a program to predict integral beta-barrel outer membrane proteins encoded within genomes of Gram-negative bacteria. Nucleic Acids Res32:W394–W399[CrossRef]
    [Google Scholar]
  3. Chiu C. H., Tang P., Chu C., Hu S., Bao Q., Yu J., Chou Y. Y., Wang H. S., Lee Y. S. 2005; The genome sequence of Salmonella enterica serovar Choleraesuis, a highly invasive and resistant zoonotic pathogen. Nucleic Acids Res33:1690–1698[CrossRef]
    [Google Scholar]
  4. Foster J., Ganatra M., Kamal I. & 23 other authors. 2005; The Wolbachia genome of Brugia malayi: endosymbiont evolution within a human pathogenic nematode. PLoS Biol3: e121[CrossRef]
    [Google Scholar]
  5. Gill S. R., Fouts D. E., 26 other authors Archer G. L.. 2005; Insights on evolution of virulence and resistance from the complete genome analysis of an early methicillin-resistant Staphylococcus aureus strain and a biofilm-producing methicillin-resistant Staphylococcus epidermidis strain. J Bacteriol187:2426–2438[CrossRef]
    [Google Scholar]
  6. Halling S. M., Peterson-Burch B. D., Bricker B. J., Zuerner R. L., Qing Z., Li L. L., Kapur V., Alt D. P., Olsen S. C. 2005; Completion of the genome sequence of Brucella abortus and comparison to the highly similar genomes ofBrucella melitensis and Brucella suis. J Bacteriol187:2715–2726[CrossRef]
    [Google Scholar]
  7. Jones D. T., Taylor W. R., Thornton J. M. 1994; A model recognition approach to the prediction of all-helical membrane protein structure and topology. Biochemistry33:3038–3049[CrossRef]
    [Google Scholar]
  8. Krogh A., Larsson B., von Heijne G., Sonnhammer E. L. 2001; Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J Mol Biol305:567–580[CrossRef]
    [Google Scholar]
  9. Möller S., Croning M. D., Apweiler R. 2001; Evaluation of methods for the prediction of membrane spanning regions. Bioinformatics17:646–653[CrossRef]
    [Google Scholar]
  10. Thomson N. R., Yeats C., Bell K.. 17 other authors 2005; The Chlamydophila abortus genome sequence reveals an array of variable proteins that contribute to interspecies variation. Genome Res15:629–640[CrossRef]
    [Google Scholar]
  11. Tusnady G. E., Simon I. 2001; The hmmtop transmembrane topology prediction server. Bioinformatics17:849–850[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.28181-0
Loading
/content/journal/micro/10.1099/mic.0.28181-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error