1887

Abstract

The so-called genes, which encode components of the Clp proteolytic complex, are widespread among bacteria. The UCC 2003 genome contains a gene with significant homology to predicted genes from other members of the group. The heat- and osmotic-inducibility of the UCC 2003 homologue was verified by slot-blot analysis, while Northern blot and primer extension analyses showed that the gene is transcribed as a monocistronic unit with a single promoter. The role of a homologue, known to control the regulation of and gene expression in other high G+C content bacteria was investigated by gel mobility shift assays. Moreover the predicted 3D structure of HspR provides further insight into the binding mode of this protein to the promoter region, and highlights the key amino acid residues believed to be involved in the protein–DNA interaction.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.28176-0
2005-09-01
2019-11-20
Loading full text...

Full text loading...

/deliver/fulltext/micro/151/9/mic1512861.html?itemId=/content/journal/micro/10.1099/mic.0.28176-0&mimeType=html&fmt=ahah

References

  1. Bucca, G., Ferina, G., Puglia, A. M. & Smith, C. P. ( 1995; ). The dnaK operon of Streptomyces coelicolor encodes a novel heat-shock protein which binds to the promoter region of the operon. Mol Microbiol 17, 663–674.[CrossRef]
    [Google Scholar]
  2. Bucca, G., Hindle, Z. & Smith, C. P. ( 1997; ). Regulation of the dnaK operon of Streptomyces coelicolor A3(2) is governed by HspR, an autoregulatory repressor. J Bacteriol 179, 5999–6004.
    [Google Scholar]
  3. Bucca, G., Brassington, A. M. E., Schonfeld, H. J. & Smith, C. P. ( 2000; ). The HspR regulon of Streptomyces coelicolor: a role for the DnaK chaperone as a transcriptional co-repressor. Mol Microbiol 38, 1093–1103.
    [Google Scholar]
  4. Bucca, G., Brassington, A. M. E., Hotchkiss, G., Mersinias, V. & Smith, C. P. ( 2003; ). Negative feedback regulation of dnaK, clpB and lon expression by the DnaK chaperone machine in Streptomyces coelicolor, identified by transcriptome and in vivo DnaK-depletion analysis. Mol Microbiol 50, 153–166.[CrossRef]
    [Google Scholar]
  5. Chamnongpol, S. & Groisman, E. A. ( 2002; ). Mg2+ homeostasis and avoidance of metal toxicity. Mol Microbiol 44, 561–571.[CrossRef]
    [Google Scholar]
  6. Changela, A., Chen, K., Xue, Y., Holschen, J., Outten, C. E., O'Halloran, T. V. & Mondragon, A. ( 2003; ). Molecular basis of metal-ion selectivity and zeptomolar sensitivity by CueR. Science 301, 1383–1387.[CrossRef]
    [Google Scholar]
  7. Chastanet, A. & Msadek, T. ( 2003; ). clpP of Streptococcus salivarius is a novel member of the dually regulated class of stress response genes in Gram-positive bacteria. J Bacteriol 185, 683–687.[CrossRef]
    [Google Scholar]
  8. Derre, I., Rapoport, G. & Msadek, T. ( 1999; ). CtsR, a novel regulator of stress and heat shock response, controls clp and molecular chaperone gene expression in Gram-positive bacteria. Mol Microbiol 31, 117–131.[CrossRef]
    [Google Scholar]
  9. Engels, S., Schweitzer, J.-E., Ludwig, C., Bott, M. & Schaffer, S. ( 2004; ). clpC and clpP1P2 gene expression in Corynebacterium glutamicum is controlled by a regulatory network involving the transcriptional regulators ClgR and HspR as well as the ECF sigma factor σ H. Mol Microbiol 52, 285–302.[CrossRef]
    [Google Scholar]
  10. Falah, M. & Gupta, R. ( 1997; ). Phylogenetic analysis of Mycoplasma based on Hsp70 sequences: cloning of the dnaK (hsp70) gene of Mycoplasma capricolum. Int J Syst Bacteriol 47, 38–45.[CrossRef]
    [Google Scholar]
  11. Frees, D., Varmanen, P. & Igmer, H. ( 2001; ). Stress tolerance and proteolysis in Lactococcus lactis. Mol Microbiol 41, 93–103.[CrossRef]
    [Google Scholar]
  12. Georgopoulus, C. & Welch, W. J. ( 1993; ). Role of the major heat shock proteins as molecular chaperones. Annu Rev Cell Biol 9, 601–634.[CrossRef]
    [Google Scholar]
  13. Gottesman, S., Roche, E., Zhou, Y. N. & Sauer, R. T. ( 1998; ). The ClpXP and ClpAP proteases degrade proteins with carboxy-terminal peptide tails added by the SsrA-tagging system. Genes Dev 12, 1338–1347.[CrossRef]
    [Google Scholar]
  14. Grandvalet, C., Crécy-Lagard, V. & Mazodier, P. ( 1999; ). The ClpB ATPase of Streptomyces albus G belongs to the HspR heat shock regulon. Mol Microbiol 31, 521–532.[CrossRef]
    [Google Scholar]
  15. Heldwein, E. E. & Brennan, R. G. ( 2001; ). Crystal structure of the transcription activator BmrR bound to DNA and to a drug. Nature 409, 378–382.[CrossRef]
    [Google Scholar]
  16. Laemmli, U. K. ( 1970; ). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680–685.[CrossRef]
    [Google Scholar]
  17. Martirani, L., Raniello, R., Naclerio, G., Ricca, E. & De Felice, M. ( 2001; ). Identification of the DNA-binding protein, HrcA of Streptococcus thermophilus. FEMS Microbiol Lett 198, 177–182.[CrossRef]
    [Google Scholar]
  18. Narberhaus, F. ( 1999; ). Negative regulation of bacterial heat shock genes. Mol Microbiol 31, 1–8.[CrossRef]
    [Google Scholar]
  19. Newberry, K. J. & Brennan, R. G. ( 2004; ). The structural mechanism for transcription activation by MerR family member multidrug transporter activation, N terminus. J Biol Chem 279, 20356–20362.[CrossRef]
    [Google Scholar]
  20. Outten, C. E., Outten, F. W. & O'Halloran, T. V. ( 1999; ). DNA distortion mechanism for transcriptional activation by ZntR, a Zn(II)-responsive MerR homologue in Escherichia coli. J Biol Chem 274, 37517–37524.[CrossRef]
    [Google Scholar]
  21. Rychlewski, L., Jaroszewski, L., Li, W. & Godzik, A. ( 2000; ). Comparison of sequence profiles. Strategies for structural predictions using sequence information. Protein Sci 9, 232–241.
    [Google Scholar]
  22. Sambrook, J. & Russell, D. W. ( 2001; ). Molecular Cloning: a Laboratory Manual, 3rd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  23. Scardovi, V. ( 1984; ). Genus Bifidobacterium Orla-Jensen, 1924, 472. In Bergey's Manual of Systematic Bacteriology, vol. 1, pp. 1418–1434. Edited by N. R. Krieg & J. G. Holt. Baltimore, MD: Williams & Wilkins.
  24. Schelin, J., Lindmark, F. & Clarke, A. K. ( 2002; ). The clp multigene family for the ATP-dependent Clp protease in the cyanobacterium Synechococcus. Microbiology 148, 2255–2265.
    [Google Scholar]
  25. Schell, M. A., Karmirantzou, M., Snel, B. & 9 other authors ( 2002; ). The genome sequence of Bifidobacterium longum reflects its adaptation to the human gastrointestinal tract. Proc Natl Acad Sci U S A 99, 14422–14427.[CrossRef]
    [Google Scholar]
  26. Schirmer, E. C., Glover, J. R., Singer, M. A. & Lindquist, S. ( 1996; ). HSP100/Clp proteins: a common mechanism explains diverse functions. Trends Biochem Sci 21, 289–296.[CrossRef]
    [Google Scholar]
  27. Schmidt, G. & Zink, R. ( 2000; ). Basic features of stress response in three species of bifidobacteria: B. longum, B. adolescentis, and B. breve. Int J Food Microbiol 55, 41–45.[CrossRef]
    [Google Scholar]
  28. Schulz, A. & Schumann, W. ( 1996; ). hrcA, the first gene of the Bacillus subtilis dnaK operon encodes a negative regulator of class I heat shock genes. J Bacteriol 178, 1088–1093.
    [Google Scholar]
  29. Servant, P. & Mazodier, P. ( 2001; ). Negative regulation of the heat shock response in Streptomyces. Arch Microbiol 176, 237–242.[CrossRef]
    [Google Scholar]
  30. Spohn, G. & Scarlato, V. ( 1999; ). The autoregulatory HspR repressor protein governs chaperone gene transcription in Helicobacter pylori. Mol Microbiol 34, 663–674.[CrossRef]
    [Google Scholar]
  31. Squires, C. & Squires, C. L. ( 1992; ). The Clp proteins: proteolysis regulators or molecular chaperones? J Bacteriol 174, 1081–1085.
    [Google Scholar]
  32. Stewart, G. R., Wernisch, L., Stabler, R., Mangan, J. A., Hinds, J. & Laing, K. G. ( 2002; ). Dissection of the heat-shock response in Mycobacterium tuberculosis using mutants and microarrays. Microbiology 148, 3129–3138.
    [Google Scholar]
  33. Summers, A. O. ( 1992; ). Untwist and shout: a heavy metal-responsive transcriptional regulator. J Bacteriol 174, 3097–3101.
    [Google Scholar]
  34. Taddei, F., Hayakawa, H., Bouton, M. F., Cirinesi, A. M., Matic, L., Sekiguchi, M. & Radman, M. ( 1997; ). Counteraction by MutT protein of transcriptional errors caused by oxidative damage. Science 278, 128–130.[CrossRef]
    [Google Scholar]
  35. van de Guchte, M., Serror, P., Chervaux, C., Smokvina, T., Ehrlich, S. D. & Manguin, E. ( 2002; ). Stress responses in lactic acid bacteria. Antonie van Leeuwenhoek 82, 187–216.[CrossRef]
    [Google Scholar]
  36. Ventura, M., Canchaya, C., Meylan, V., Klaenhammer, T. R. & Zink, R. ( 2003; ). Analysis, characterization and loci of the tuf genes in Lactobacillus and Bifidobacterium and their direct application for species identification. Appl Environ Microbiol 69, 6908–6922.[CrossRef]
    [Google Scholar]
  37. Ventura, M., van Sinderen, D., Fitzgerald, G. F. & Zink, R. ( 2004a; ). Insights into the taxonomy, genetics and physiology of bifidobacteria. Antonie van Leeuwenhoek 86, 205–223.[CrossRef]
    [Google Scholar]
  38. Ventura, M., Canchaya, C., Zink, R., Fitzgerald, G. F. & van Sinderen, D. ( 2004b; ). Characterization of the groEL and groES loci in Bifidobacterium breve UCC 2003: genetic, transcriptional and phylogenetic analysis. Appl Environ Microbiol 70, 6197–6209.[CrossRef]
    [Google Scholar]
  39. Ventura, M., Canchaya, C., van Sinderen, D., Fitzgerald, G. F. & Zink, R. ( 2004c; ). Bifidobacterium lactis DSM 10140: identification of the atp (atpBEFHAGDC) operon, its genetic structure, characterization and phylogenic analysis. Appl Environ Microbiol 70, 3110–3121.[CrossRef]
    [Google Scholar]
  40. Ventura, M., Zink, R., Fitzgerald, G. F. & van Sinderen, D. ( 2005a; ). Gene structure and transcriptional organization of the dnaK operon of Bifidobacterium breve UCC 2003 and its application in bifidobacterial tracing. Appl Environ Microbiol 71, 487–500.[CrossRef]
    [Google Scholar]
  41. Ventura, M., Fitzgerald, G. F. & van Sinderen, D. ( 2005b; ). Genetic and transcriptional organization of the clpC locus in Bifidobacterium breve UCC 2003. Appl Environ Microbiol (in press).
    [Google Scholar]
  42. Vriend, G. ( 1990; ). what if: a molecular modeling and drug design program. J Mol Graph 8, 52–56.[CrossRef]
    [Google Scholar]
  43. Wawrzynow, A., Baneckim, B. & Zylic, M. ( 1996; ). The Clp ATPases define a novel class of molecular chaperones. Mol Microbiol 21, 859–899.
    [Google Scholar]
  44. Wickner, S., Maurizi, M. R. & Gottesman, S. ( 1999; ). Posttranslational quality control: folding, refolding, and degrading proteins. Science 286, 1888–1893.[CrossRef]
    [Google Scholar]
  45. Wolf, A., Kramer, R. & Morbach, S. ( 2003; ). Three pathways for trehalose metabolism in Corynebacterium glutamicum ATCC 13032 and their significance in response to osmotic stress. Mol Microbiol 49, 1119–1134.[CrossRef]
    [Google Scholar]
  46. Yuan, G. & Wong, S. L. ( 1995; ). Regulation of groE expression in Bacillus subtilis: the involvement of the σA-like promoter and the roles of the inverted repeat sequence (CIRCE). J Bacteriol 177, 5427–5433.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.28176-0
Loading
/content/journal/micro/10.1099/mic.0.28176-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error