1887

Abstract

The FliX/FlbD-dependent temporal transcription of late flagellar genes in requires the assembly of an early, class II-encoded flagellar structure. Class II flagellar-mutant strains exhibit a delay in the completion of cell division, with the accumulation of filamentous cells in culture. It is shown here that this cell-division defect is attributable to an arrest in the final stages of cell separation. Normal cell morphology could be restored in class II mutants by gain-of-function alleles of FliX or FlbD, suggesting that the timely completion of cell division requires these -acting factors. In synchronized cultures, inhibition of cell division by depleting FtsZ resulted in normal initial expression of the late, FlbD-dependent gene; however, the cell cycle-regulated cessation of transcription was delayed, indicating that cell division may be required to negatively regulate FlbD activity. Interestingly, prolonged depletion of FtsZ resulted in an eventual loss of FlbD activity that could be bypassed by a constitutive mutant of FlbD, but not of FliX, suggesting the possible existence of a second cell cycle-dependent pathway for FlbD activation.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.28174-0
2005-11-01
2019-10-14
Loading full text...

Full text loading...

/deliver/fulltext/micro/151/11/3699.html?itemId=/content/journal/micro/10.1099/mic.0.28174-0&mimeType=html&fmt=ahah

References

  1. Anderson, P. E. & Gober, J. W. ( 2000; ). FlbT, the post-transcriptional regulator of flagellin synthesis in Caulobacter crescentus, interacts with the 5′ untranslated region of flagellin mRNA. Mol Microbiol 38, 41–52.[CrossRef]
    [Google Scholar]
  2. Ausmees, N. & Jacobs-Wagner, C. ( 2003; ). Spatial and temporal control of differentiation and cell cycle progression in Caulobacter crescentus. Annu Rev Microbiol 57, 225–247.[CrossRef]
    [Google Scholar]
  3. Benson, A. K., Ramakrishnan, G., Ohta, N., Feng, J., Ninfa, A. J. & Newton, A. ( 1994a; ). The Caulobacter crescentus FlbD protein acts at ftr sequence elements both to activate and to repress transcription of cell cycle-regulated flagellar genes. Proc Natl Acad Sci U S A 91, 4989–4993.[CrossRef]
    [Google Scholar]
  4. Benson, A. K., Wu, J. & Newton, A. ( 1994b; ). The role of FlbD in regulation of flagellar gene transcription in Caulobacter crescentus. Res Microbiol 145, 420–430.[CrossRef]
    [Google Scholar]
  5. Bi, E. & Lutkenhaus, J. ( 1991; ). FtsZ ring structure associated with division in Escherichia coli. Nature 354, 161–164.[CrossRef]
    [Google Scholar]
  6. Dingwall, A., Zhuang, W. Y., Quon, K. & Shapiro, L. ( 1992; ). Expression of an early gene in the flagellar regulatory hierarchy is sensitive to an interruption in DNA replication. J Bacteriol 174, 1760–1768.
    [Google Scholar]
  7. Domian, I. J., Quon, K. C. & Shapiro, L. ( 1997; ). Cell type-specific phosphorylation and proteolysis of a transcriptional regulator controls the G1-to-S transition in a bacterial cell cycle. Cell 90, 415–424.[CrossRef]
    [Google Scholar]
  8. Ely, B. & Johnson, R. C. ( 1977; ). Generalized transduction in Caulobacter crescentus. Genetics 87, 391–399.
    [Google Scholar]
  9. England, J. C. & Gober, J. W. ( 2001; ). Cell cycle control of cell morphogenesis in Caulobacter. Curr Opin Microbiol 4, 674–680.[CrossRef]
    [Google Scholar]
  10. Gober, J. W. & England, J. ( 2000; ). Regulation of flagellum biosynthesis and motility in Caulobacter. In Prokaryotic Development, pp. 319–339. Edited by Y. V. Brun & L. J. Shimkets. Washington, DC: American Society for Microbiology.
  11. Gober, J. W. & Shapiro, L. ( 1992; ). A developmentally regulated Caulobacter flagellar promoter is activated by 3′ enhancer and IHF binding elements. Mol Biol Cell 3, 913–926.[CrossRef]
    [Google Scholar]
  12. Gober, J. W., Boyd, C. H., Jarvis, M., Mangan, E. K., Rizzo, M. F. & Wingrove, J. A. ( 1995; ). Temporal and spatial regulation of fliP, an early flagellar gene of Caulobacter crescentus that is required for motility and normal cell division. J Bacteriol 177, 3656–3667.
    [Google Scholar]
  13. Huguenel, E. D. & Newton, A. ( 1982; ). Localization of surface structures during procaryotic differentiation: role of cell division in Caulobacter crescentus. Differentiation 21, 71–78.[CrossRef]
    [Google Scholar]
  14. Kelly, A. J., Sackett, M. J., Din, N., Quardokus, E. & Brun, Y. V. ( 1998; ). Cell cycle-dependent transcriptional and proteolytic regulation of FtsZ in Caulobacter. Genes Dev 12, 880–893.[CrossRef]
    [Google Scholar]
  15. Kovach, M. E., Phillips, R. W., Elzer, P. H., Roop, R. M., II & Peterson, K. M. ( 1994; ). pBBR1MCS: a broad-host-range cloning vector. Biotechniques 16, 800–802.
    [Google Scholar]
  16. Laub, M. T., Chen, S. L., Shapiro, L. & McAdams, H. H. ( 2002; ). Genes directly controlled by CtrA, a master regulator of the Caulobacter cell cycle. Proc Natl Acad Sci U S A 99, 4632–4637.[CrossRef]
    [Google Scholar]
  17. Lutkenhaus, J. & Addinall, S. G. ( 1997; ). Bacterial cell division and the Z ring. Annu Rev Biochem 66, 93–116.[CrossRef]
    [Google Scholar]
  18. Maddock, J. R. & Shapiro, L. ( 1993; ). Polar localization of the chemoreceptor complex in the Escherichia coli cell. Science 259, 1717–1723.[CrossRef]
    [Google Scholar]
  19. Mangan, E. K., Bartamian, M. & Gober, J. W. ( 1995; ). A mutation that uncouples flagellum assembly from transcription alters the temporal pattern of flagellar gene expression in Caulobacter crescentus. J Bacteriol 177, 3176–3184.
    [Google Scholar]
  20. Mangan, E. K., Malakooti, J., Caballero, A., Anderson, P., Ely, B. & Gober, J. W. ( 1999; ). FlbT couples flagellum assembly to gene expression in Caulobacter crescentus. J Bacteriol 181, 6160–6170.
    [Google Scholar]
  21. Matroule, J.-Y., Lam, H., Burnette, D. T. & Jacobs-Wagner, C. ( 2004; ). Cytokinesis monitoring during development: rapid pole-to-pole shuttling of a signaling protein by localized kinase and phosphatase in Caulobacter. Cell 118, 579–590.[CrossRef]
    [Google Scholar]
  22. Miller, J. H. ( 1972; ). Assay of β-galactosidase. In Experiments in Molecular Genetics, pp. 352–355. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  23. Mohl, D. A., Easter, J., Jr & Gober, J. W. ( 2001; ). The chromosome partitioning protein, ParB, is required for cytokinesis in Caulobacter crescentus. Mol Microbiol 42, 741–755.
    [Google Scholar]
  24. Mohr, C. D., MacKichan, J. K. & Shapiro, L. ( 1998; ). A membrane-associated protein, FliX, is required for an early step in Caulobacter flagellar assembly. J Bacteriol 180, 2175–2185.
    [Google Scholar]
  25. Muir, R. E. & Gober, J. W. ( 2001; ). Regulation of late flagellar gene transcription and cell division by flagellum assembly in Caulobacter crescentus. Mol Microbiol 41, 117–130.[CrossRef]
    [Google Scholar]
  26. Muir, R. E. & Gober, J. W. ( 2002; ). Mutations in FlbD that relieve the dependency on flagellum assembly alter the temporal and spatial pattern of developmental transcription in Caulobacter crescentus. Mol Microbiol 43, 597–616.[CrossRef]
    [Google Scholar]
  27. Muir, R. E. & Gober, J. W. ( 2004; ). Regulation of FlbD activity by flagellum assembly is accomplished through direct interaction with the trans-acting factor, FliX. Mol Microbiol 54, 715–730.[CrossRef]
    [Google Scholar]
  28. Muir, R. E. O'Brien T. M. & Gober, J. W. ( 2001; ). The Caulobacter crescentus flagellar gene, fliX, encodes a novel trans-acting factor that couples flagellar assembly to transcription. Mol Microbiol 39, 1623–1637.[CrossRef]
    [Google Scholar]
  29. Mullin, D. A., Van Way, S. M., Blankenship, C. A. & Mullin, A. H. ( 1994; ). FlbD has a DNA-binding activity near its carboxy terminus that recognizes ftr sequences involved in positive and negative regulation of flagellar gene transcription in Caulobacter crescentus. J Bacteriol 176, 5971–5981.
    [Google Scholar]
  30. Newton, A., Ohta, N., Ramakrishnan, G., Mullin, D. & Raymond, G. ( 1989; ). Genetic switching in the flagellar gene hierarchy of Caulobacter requires negative as well as positive regulation of transcription. Proc Natl Acad Sci U S A 86, 6651–6655.[CrossRef]
    [Google Scholar]
  31. Ohta, N., Ninfa, A. J., Allaire, A., Kulick, L. & Newton, A. ( 1997; ). Identification, characterization, and chromosomal organization of cell division cycle genes in Caulobacter crescentus. J Bacteriol 179, 2169–2180.
    [Google Scholar]
  32. Poindexter, J. S. ( 1964; ). Biological properties and classification of the Caulobacter group. Bacteriol Rev 28, 231–295.
    [Google Scholar]
  33. Poindexter, J. S. & Hagenzieker, J. G. ( 1981; ). Constriction and septation during cell division in caulobacters. Can J Microbiol 27, 704–719.[CrossRef]
    [Google Scholar]
  34. Quardokus, E. M. & Brun, Y. V. ( 2003; ). Cell cycle timing and developmental checkpoints in Caulobacter crescentus. Curr Opin Microbiol 6, 541–549.[CrossRef]
    [Google Scholar]
  35. Quardokus, E., Din, N. & Brun, Y. V. ( 1996; ). Cell cycle regulation and cell type-specific localization of the FtsZ division initiation protein in Caulobacter. Proc Natl Acad Sci U S A 93, 6314–6319.[CrossRef]
    [Google Scholar]
  36. Quon, K. C., Marczynski, G. T. & Shapiro, L. ( 1996; ). Cell cycle control by an essential bacterial two-component signal transduction protein. Cell 84, 83–93.[CrossRef]
    [Google Scholar]
  37. Ramakrishnan, G. & Newton, A. ( 1990; ). FlbD of Caulobacter crescentus is a homologue of the NtrC (NRI) protein and activates σ 54-dependent flagellar gene promoters. Proc Natl Acad Sci U S A 87, 2369–2373.[CrossRef]
    [Google Scholar]
  38. Ramakrishnan, G., Zhao, J.-L. & Newton, A. ( 1994; ). Multiple structural proteins are required for both transcriptional activation and negative autoregulation of Caulobacter crescentus flagellar genes. J Bacteriol 176, 7587–7600.
    [Google Scholar]
  39. Reisenauer, A., Quon, K. & Shapiro, L. ( 1999; ). The CtrA response regulator mediates temporal control of gene expression during the Caulobacter cell cycle. J Bacteriol 181, 2430–2439.
    [Google Scholar]
  40. Ryan, K. R. & Shapiro, L. ( 2003; ). Temporal and spatial regulation in prokaryotic cell cycle progression and development. Annu Rev Biochem 72, 367–394.[CrossRef]
    [Google Scholar]
  41. Simon, R., Priefer, U. & Pühler, A. ( 1983; ). A broad host range mobilization system for in vivo genetic engineering: transposon mutagenesis in Gram negative bacteria. Bio/Technology 1, 784–790.[CrossRef]
    [Google Scholar]
  42. Stephens, C. M. & Shapiro, L. ( 1993; ). An unusual promoter controls cell-cycle regulation and dependence on DNA replication of the Caulobacter fliLM early flagellar operon. Mol Microbiol 9, 1169–1179.[CrossRef]
    [Google Scholar]
  43. Stephens, C., Mohr, C., Boyd, C., Maddock, J., Gober, J. & Shapiro, L. ( 1997; ). Identification of the fliI and fliJ components of the Caulobacter flagellar type III protein secretion system. J Bacteriol 179, 5355–5365.
    [Google Scholar]
  44. Terrana, B. & Newton, A. ( 1976; ). Requirement of a cell division step for stalk formation in Caulobacter crescentus. J Bacteriol 128, 456–462.
    [Google Scholar]
  45. Towbin, H., Staehelin, T. & Gordon, J. ( 1979; ). Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A 76, 4350–4354.[CrossRef]
    [Google Scholar]
  46. Wang, Y., Jones, B. D. & Brun, Y. V. ( 2001; ). A set of ftsZ mutants blocked at different stages of cell division in Caulobacter. Mol Microbiol 40, 347–360.[CrossRef]
    [Google Scholar]
  47. Wingrove, J. A. & Gober, J. W. ( 1994; ). A σ 54 transcriptional activator also functions as a pole-specific repressor in Caulobacter. Genes Dev 8, 1839–1852.[CrossRef]
    [Google Scholar]
  48. Wingrove, J. A., Mangan, E. K. & Gober, J. W. ( 1993; ). Spatial and temporal phosphorylation of a transcriptional activator regulates pole-specific gene expression in Caulobacter. Genes Dev 7, 1979–1992.[CrossRef]
    [Google Scholar]
  49. Wortinger, M., Sackett, M. J. & Brun, Y. V. ( 2000; ). CtrA mediates a DNA replication checkpoint that prevents cell division in Caulobacter crescentus. EMBO J 19, 4503–4512.[CrossRef]
    [Google Scholar]
  50. Wu, J., Benson, A. K. & Newton, A. ( 1995; ). Global regulation of a σ 54-dependent flagellar gene family in Caulobacter crescentus by the transcriptional activator FlbD. J Bacteriol 177, 3241–3450.
    [Google Scholar]
  51. Xu, H., Dingwall, A. & Shapiro, L. ( 1989; ). Negative transcriptional regulation in the Caulobacter flagellar hierarchy. Proc Natl Acad Sci U S A 86, 6656–6660.[CrossRef]
    [Google Scholar]
  52. Yu, J. & Shapiro, L. ( 1992; ). Early Caulobacter crescentus genes fliL and fliM are required for flagellar gene expression and normal cell division. J Bacteriol 174, 3327–3338.
    [Google Scholar]
  53. Zhuang, W. Y. & Shapiro, L. ( 1995; ). Caulobacter FliQ and FliR membrane proteins, required for flagellar biogenesis and cell division, belong to a family of virulence factor export proteins. J Bacteriol 177, 343–356.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.28174-0
Loading
/content/journal/micro/10.1099/mic.0.28174-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error