1887

Abstract

Improvements in the purification of methanobactin (mb) from either OB3b or Bath resulted in preparations that stimulated methane-oxidation activity in both whole-cell and cell-free fractions of Bath expressing the membrane-associated methane monooxygenase (pMMO). By using washed membrane factions with pMMO activities in the 290 nmol propylene oxidized min (mg protein) range, activities approaching 400 nmol propylene oxidized min (mg protein) were commonly observed following addition of copper-containing mb (Cu–mb), which represented 50–75 % of the total whole-cell activity. The stimulation of methane-oxidation activity by Cu–mb was similar to or greater than that observed with equimolar concentrations of Cu(II), without the inhibitory effects observed with high copper concentrations. Stimulation of pMMO activity was not observed with copper-free mb, nor was it observed when the copper-to-mb ratio was <0·5 Cu atoms per mb. The electron paramagnetic resonance (EPR) spectra of mb differed depending on the copper-to-mb ratio. At copper-to-mb ratios of <0·4 Cu(II) per mb, Cu(II) addition to mb showed an initial coordination by both sulfur and nitrogen, followed by reduction to Cu(I) in <2 min. At Cu(II)-to-mb ratios between 0·4 and 0·9 Cu(II) per mb, the intensity of the Cu(II) signal in EPR spectra was more representative of the Cu(II) added and indicated more nitrogen coordination. The EPR spectral properties of mb and pMMO were also examined in the washed membrane fraction following the addition of Cu(II), mb and Cu–mb in the presence or absence of reductants (NADH or duroquinol) and substrates (CH and/or O). The results indicated that Cu–mb increased electron flow to the pMMO, increased the free radical formed following the addition of O and decreased the residual free radical following the addition of O plus CH. The increase in pMMO activity and EPR spectral changes to the pMMO following Cu–mb addition represent the first positive evidence of interactions between the pMMO and Cu–mb.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.28169-0
2005-10-01
2020-07-13
Loading full text...

Full text loading...

/deliver/fulltext/micro/151/10/3417.html?itemId=/content/journal/micro/10.1099/mic.0.28169-0&mimeType=html&fmt=ahah

References

  1. Basu P., Katterle B., Andersson K. K., Dalton H. 2003; The membrane-associated form of methane mono-oxygenase from Methylococcus capsulatus (Bath) is a copper/iron protein. Biochem J369:417–427[CrossRef]
    [Google Scholar]
  2. Boas J. F. 1984; Electron paramagnetic resonance of copper proteins. In Copper Proteins and Copper Enzymes pp.2–26 Edited by Lontie R.. Boca Raton, FL: CRC Press;
    [Google Scholar]
  3. Brand U., Trumpower B. 1994; The protonmotive Q cycle in mitochondria and bacteria. Crit Rev Biochem Mol Biol29:165–197[CrossRef]
    [Google Scholar]
  4. Brusseau G. A., Tsien H.-C., Hanson R. S., Wackett L. P. 1990; Optimization of trichloroethylene oxidation by methanotrophs and the use of a colorimetric assay to detect soluble methane monooxygenase activity. Biodegradation1:19–29[CrossRef]
    [Google Scholar]
  5. Chan S. I., Chen K. H.-C., Yu S. S.-F., Chen C.-L., Kuo S. S.-J. 2004; Toward delineating the structure and function of the particulate methane monooxygenase from methanotrophic bacteria. Biochemistry43:4421–4430[CrossRef]
    [Google Scholar]
  6. Choi D.-W., Kunz R. C., Boyd E. S. & 7 other authors. 2003; The membrane-associated methane monooxygenase (pMMO) and pMMO-NADH : quinone oxidoreductase complex from Methylococcus capsulatus Bath. J Bacteriol185:5755–5764[CrossRef]
    [Google Scholar]
  7. Collins L. M. P., Buchholz L. A., Remsen C. C. 1991; Effect of copper on Methylomonas album BG8. Appl Environ Microbiol57:1261–1264
    [Google Scholar]
  8. Dalton H., Prior S. D., Leak D. J., Stanley S. H. 1984; Regulation and control of methane monooxygenase. In Microbial Growth on C1 Compounds pp.75–82 Edited by Crawford R. L., Hanson R. S.. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  9. DiSpirito A. A., Zahn J. A., Graham D. W., Kim H. J., Larive C. K., Derrick T. S., Cox C. D., Taylor A. 1998; Copper-binding compounds from Methylosinus trichosporium OB3b. J Bacteriol180:3606–3613
    [Google Scholar]
  10. DiSpirito A. A., Kunz R. C., Choi D. W., Zahn J. A. 2004; Electron flow during methane oxidation in methanotrophs. In Respiration in Archaea and Bacteria pp.141–169 Edited by Zannoni D.. The Netherlands: Kluwer Scientific;
    [Google Scholar]
  11. Fitch M. W., Graham D. W., Arnold R. G., Agarwal S. K., Phelps P., Speitel G. E. Jr, Georgiou G. 1993; Phenotypic characterization of copper-resistant mutants of Methylosinus trichosporium OB3b. Appl Environ Microbiol59:2771–2776
    [Google Scholar]
  12. Henry E. R., Hofrichter J. 1992; Singular value decomposition: application to analysis of experimental data. Methods Enzymol210:129–192
    [Google Scholar]
  13. Kim H. J., Graham D. W., DiSpirito A. A., Alterman M. A., Galeva N., Larive C. K., Asunskis D., Sherwood P. M. A. 2004; Methanobactin, a copper-acquisition compound from methane-oxidizing bacteria. Science305:1612–1615[CrossRef]
    [Google Scholar]
  14. Kim H. J., Galeva N., Larive C. K., Alterman M., Graham D. W. 2005; Purification and physical-chemical properties of methanobactin: a chalkophore from Methylosinus trichosporium OB3b. Biochemistry44:5140–5148[CrossRef]
    [Google Scholar]
  15. Lieberman R. L., Rosenzweig A. C. 2004; Biological methane oxidation: regulation, biochemistry, and active site structure of particulate methane monooxygenase. Crit Rev Biochem Mol Biol39:147–164[CrossRef]
    [Google Scholar]
  16. Lieberman R. L., Rosenzweig A. C. 2005; Crystal structure of a membrane-bound metalloenzyme that catalyses the biological oxidation of methane. Nature434:177–182[CrossRef]
    [Google Scholar]
  17. Lieberman R. L., Shrestha D. B., Doan P. E., Hoffman B. M., Stemmler T. L., Rosenzweig A. C. 2003; Purified particulate methane monooxygenase from Methylococcus capsulatus (Bath) is a dimer with both mononuclear copper and a copper-containing cluster. Proc Natl Acad Sci U S A100:3820–3825[CrossRef]
    [Google Scholar]
  18. Matsumo-Yagi A., Hatefi Y. 1999; Ubiquinol : cytochrome c oxidoreductase: effects of inhibitors on reverse electron transfer from the iron-sulfur protein to cytochrome b . J Biol Chem274:9283–9288[CrossRef]
    [Google Scholar]
  19. Nguyen H.-H. T., Shiemke A. K., Jacobs S. J., Hales B. J., Lidstrom M. E., Chan S. I. 1994; The nature of the copper ions in the membranes containing the particulate methane monooxygenase from Methylococcus capsulatus (Bath. J Biol Chem269:14995–15005
    [Google Scholar]
  20. Nguyen H.-H. T., Nakagawa K. H., Hedman B., Elliott S. J., Lidstrom M. E., Hodgson K. O., Chan S. I. 1996; X-ray absorption and EPR studies on the copper ions associated with the particulate methane monooxygenase from Methylococcus capsulatus (Bath. Cu(I) ions and their implications. J Am Chem Soc118:12766–12776[CrossRef]
    [Google Scholar]
  21. Nguyen H.-H. T., Elliott S. J., Yip J. H.-K., Chan S. I. 1998; The particulate methane monooxygenase from Methylococcus capsulatus (Bath) is a novel copper-containing three-subunit enzyme. J Biol Chem273:7957–7966[CrossRef]
    [Google Scholar]
  22. Shiemke A. K., Cook S. A., Miley T., Singleton P. 1995; Detergent solubilization of membrane-bound methane monooxygenase requires plastoquinol analogs as electron donors. Arch Biochem Biophys321:421–428[CrossRef]
    [Google Scholar]
  23. Shiemke A. K., Arp D. J., Sayavedra-Soto L. A. 2004; Inhibition of membrane-bound methane monooxygenase and ammonia monooxygenase by diphenyliodonium: implications for electron transfer. J Bacteriol186:928–937[CrossRef]
    [Google Scholar]
  24. Sommerhalter M., Lieberman R. L., Rosenzweig A. C. 2005; X-ray crystallography and biological metal centers: is seeing believing?. Inorg Chem44:770–778[CrossRef]
    [Google Scholar]
  25. Takeguchi M., Okura I. 2000; Role of iron and copper in particulate methane monooxygenase of Methylosinus trichosporium OB3b. Catal Surv Jpn4:51–63[CrossRef]
    [Google Scholar]
  26. Takeguchi M., Miyakawa K., Okura I. 1999; The role of copper in particulate methane monooxygenase from Methylosinus trichosporium OB3b. J Mol Catal137:161–168[CrossRef]
    [Google Scholar]
  27. Téllez C. M., Gaus K. P., Graham D. W., Arnold R. G., Guzman R. Z. 1998; Isolation of copper biochelates from Methylosinus trichosporium OB3b and soluble methane monooxygenase mutants. Appl Environ Microbiol64:1115–1122
    [Google Scholar]
  28. Wallar B. J., Lipscomb J. D. 1996; Dioxygen activation by enzymes containing binuclear non-heme iron clusters. Chem Rev96:2625–2658[CrossRef]
    [Google Scholar]
  29. Wallar B. J., Lipscomb J. D. 2001; Methane monooxygenase component B mutants alter the kinetics of steps throughout the catalytic cycle. Biochemistry40:2220–2233[CrossRef]
    [Google Scholar]
  30. Yu S. S.-F., Chen K. H.-C., Tseng M. Y.-H., Wang Y.-S., Tseng C.-F., Chen Y.-J., Huang D.-S., Chan S. I. 2003; Production of high-quality particulate methane monooxygenase in high yields from Methylococcus capsulatus (Bath) with a hollow-fiber membrane bioreactor. J Bacteriol185:5915–5924[CrossRef]
    [Google Scholar]
  31. Yuan H., Collins M. L. P., Antholine W. E. 1997; Low-frequency EPR of the copper in particulate methane monooxygenase from Methylomicrobium albus BG8. J Am Chem Soc119:5073–5074[CrossRef]
    [Google Scholar]
  32. Yuan H., Collins M. L. P., Antholine W. E. 1998a; Analysis of type 2 Cu2+ in pMMO from Methylomicrobium album BG8. Biophys J74:A300
    [Google Scholar]
  33. Yuan H., Collins M. L. P., Antholine W. E. 1998b; Concentration of Cu, EPR-detectable Cu, and formation of cupric-ferrocyanide in membranes with pMMO. J Inorg Biochem72:179–185[CrossRef]
    [Google Scholar]
  34. Yuan H., Collins L. M. P., Antholine W. E. 1999; Type 2 Cu2+ in pMMO from Methylomicrobium album BG8. Biophys J76:2223–2229[CrossRef]
    [Google Scholar]
  35. Zahn J. A., DiSpirito A. A. 1996; Membrane-associated methane monooxygenase from Methylococcus capsulatus (Bath. J Bacteriol178:1018–1029
    [Google Scholar]
  36. Zhang Z., Huang L., Shulmeister V. M., Chi Y.-I., Kim K. K., Hung L.-W., Croft A. C., Berry E. A., Kim S.-H. 1998; Electron transfer by domain movement in cytochrome bc 1. Nature392:677–684[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.28169-0
Loading
/content/journal/micro/10.1099/mic.0.28169-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error