1887

Abstract

A kinetic model is proposed to assess the feasibility of strategies for the removal of biofilms by using substances that induce detachment by affecting the cohesiveness of the matrix of extracellular polymeric substances (EPSs). The model uses a two-state description of the EPS (natural EPS and compromised EPS) to provide a unified representation of diverse mechanisms of action of detachment-promoting agents (DPAs), which include enzymes that degrade the EPS and other agents described in the literature. A biofilm-cohesiveness factor describes local increases in detachment rates resultant from losses in cohesive strength. The kinetic model was implemented in an individual-based biofilm-modelling framework, including detachment rates dependent on local cohesiveness. The efficacy of treatments with DPAs was assessed by three-dimensional model simulations. Changes in treatment efficacy were evaluated quantitatively by using a Thiele modulus, which quantifies the relationship between diffusion of the DPA through the biofilm matrix and DPA decay rate, and a Damköhler number relating the rate of EPS reaction with a DPA and the rate of EPS production by the micro-organisms in the biofilm. This study demonstrates the feasibility and limits of implementing biofilm-control strategies based on attacking the EPS.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.28165-0
2005-12-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/151/12/3817.html?itemId=/content/journal/micro/10.1099/mic.0.28165-0&mimeType=html&fmt=ahah

References

  1. Abdul Rani S., Pitts B., Stewart P. S. 2005; Rapid diffusion of fluorescent tracers into Staphylococcus epidermidis biofilms visualized by time lapse microscopy. Antimicrob Agents Chemother 49:728–732 [CrossRef]
    [Google Scholar]
  2. Allison D. G., Ruiz B., SanJose C., Jaspe A., Gilbert P. 1998; Extracellular products as mediators of the formation and detachment of Pseudomonas fluorescens biofilms. FEMS Microbiol Lett 167:179–184 [CrossRef]
    [Google Scholar]
  3. Boyd A., Chakrabarty A. M. 1994; Role of alginate lyase in cell detachment of Pseudomonas aeruginosa . Appl Environ Microbiol 60:2355–2359
    [Google Scholar]
  4. Boyd A., Chakrabarty A. M. 1995; Pseudomonas aeruginosa biofilms: role of the alginate exopolysaccharide. J Ind Microbiol Biotechnol 15:162–168
    [Google Scholar]
  5. Chen X., Stewart P. S. 2000; Biofilm removal caused by chemical treatments. Water Res 34:4229–4233 [CrossRef]
    [Google Scholar]
  6. Chen X., Stewart P. S. 2002; Role of electrostatic interactions in cohesion of bacterial biofilms. Appl Microbiol Biotechnol 59:718–720 [CrossRef]
    [Google Scholar]
  7. Christensen B. E., Ertesvag H., Beyenal H., Lewandowski Z. 2001; Resistance of biofilms containing alginate-producing bacteria to disintegration by an alginate degrading enzyme (AlgL. Biofouling 17:203–210 [CrossRef]
    [Google Scholar]
  8. Cui W., Winter W. T., Tanenbaum S. W., Nakas J. P. 1999; Purification and characterization of an intracellular carboxylesterase from Arthrobacter viscosus NRRL B-1973: physical and spectroscopic characterization and evaluation as models for cellulose triacetate. Enzyme Microb Technol 24:200–208 [CrossRef]
    [Google Scholar]
  9. Gordon C. A., Hodges N. A., Marriott C. 1991; Use of slime dispersants to promote antibiotic penetration through the extracellular polysaccharide of mucoid Pseudomonas aeruginosa . Antimicrob Agents Chemother 35:1258–1260 [CrossRef]
    [Google Scholar]
  10. Grotenhuis J. T. C., van Lier J. B., Plugge C. M., Stams A. J. M., Zehnder A. J. B. 1991; Effect of ethylene glycol-bis( β -aminoethyl ether)- N , N -tetraacetic acid (EGTA) on stability and activity of methanogenic granular sludge. Appl Microbiol Biotechnol 36:109–114 [CrossRef]
    [Google Scholar]
  11. Hermanowicz S. W. 2001; A simple 2D biofilm model yields a variety of morphological features. Math Biosci 169:1–14 [CrossRef]
    [Google Scholar]
  12. Higgins M. J., Novak J. T. 1997; The effect of cations on the settling and dewatering of activated sludges: laboratory results. Water Environ Res 69:215–224 [CrossRef]
    [Google Scholar]
  13. Horn H., Neu T. R., Wulkow M. 2001; Modelling the structure and function of extracellular polymeric substances in biofilms with new numerical techniques. Water Sci Technol 43:121–127
    [Google Scholar]
  14. Huebner J., Goldmann D. A. 1999; Coagulase-negative staphylococci: role as pathogens. Annu Rev Med 50:223–236 [CrossRef]
    [Google Scholar]
  15. Hughes K. A., Sutherland I. W., Jones M. V. 1998; Biofilm susceptibility to bacteriophage attack: the role of phage-borne polysaccharide depolymerase. Microbiology 144:3039–3047 [CrossRef]
    [Google Scholar]
  16. Hunt S. M., Hamilton M. A., Sears J. T., Harkin G., Reno J. 2003; A computer investigation of chemically mediated detachment in bacterial biofilms. Microbiology 149:1155–1163 [CrossRef]
    [Google Scholar]
  17. Hunt S. M., Werner E. M., Huang B., Hamilton M. A., Stewart P. S. 2004; Hypothesis for the role of nutrient starvation in biofilm detachment. Appl Environ Microbiol 70:7418–7425 [CrossRef]
    [Google Scholar]
  18. Itoh Y., Wang X., Hinnebusch B. J., Preston J. F., Romeo T III. 2005; Depolymerization of β -1,6- N -acetyl-d-glucosamine disrupts the integrity of diverse bacterial biofilms. J Bacteriol 187:382–387 [CrossRef]
    [Google Scholar]
  19. Jass J., Walker J. T. 2000; Biofilms and biofouling. In Industrial Biofouling: DetectionPrevention and Control pp 1–12 Edited by Walker J. T., Surman S., Jass J. New York: Wiley;
    [Google Scholar]
  20. Johansen C., Falholt P., Gram L. 1997; Enzymatic removal and disinfection of bacterial biofilms. Appl Environ Microbiol 63:3724–3728
    [Google Scholar]
  21. Kaplan J. B., Ragunath C., Ramasubbu N., Fine D. H. 2003; Detachment of Actinobacillus actinomycetemcomitans biofilm cells by an endogenous β -hexosaminidase activity. J Bacteriol 185:4693–4698 [CrossRef]
    [Google Scholar]
  22. Kaplan J. B., Ragunath C., Velliyagounder K., Fine D. H., Ramasubbu N. 2004; Enzymatic detachment of Staphylococcus epidermidis biofilms. Antimicrob Agents Chemother 48:2633–2636 [CrossRef]
    [Google Scholar]
  23. Kreft J.-U., Wimpenny J. W. T. 2001; Effect of EPS on biofilm structure and function as revealed by an individual-based model of biofilm growth. Water Sci Technol 43:135–141
    [Google Scholar]
  24. Lewandowski Z., Beyenal H., Stookey D. 2004; Reproducibility of biofilm processes and the meaning of steady state in biofilm reactors. Water Sci Technol 49:359–364
    [Google Scholar]
  25. Mayer C., Moritz R., Kirschner C., Borchard W., Maibaum R., Wingender J., Flemming H.-C. 1999; The role of intermolecular interactions: studies on model systems for bacterial biofilms. Int J Biol Macromol 26:3–16 [CrossRef]
    [Google Scholar]
  26. Nielsen P. H., Frølund B., Keiding K. 1996; Changes in the composition of extracellular polymeric substances in activated sludge during anaerobic storage. Appl Microbiol Biotechnol 44:823–830 [CrossRef]
    [Google Scholar]
  27. Ohashi A., Harada H. 1996; A novel concept for evaluation of biofilm adhesion strength by applying tensile force and shear force. Water Sci Technol 34:201–211
    [Google Scholar]
  28. Ohashi A., Koyama T., Syutsubo K., Harada H. 1999; A novel method for evaluation of biofilm tensile strength resisting erosion. Water Sci Technol 39:261–268
    [Google Scholar]
  29. Picioreanu C., van Loosdrecht M. C. M., Heijnen J. J. 2001; Two-dimensional model of biofilm detachment caused by internal stress from liquid flow. Biotechnol Bioeng 72:205–218 [CrossRef]
    [Google Scholar]
  30. Picioreanu C., Kreft J.-U., van Loosdrecht M. C. M. 2004; Particle-based multidimensional multispecies biofilm model. Appl Environ Microbiol 70:3024–3040 [CrossRef]
    [Google Scholar]
  31. Pizarro G., Griffeath D., Noguera D. R. 2001; Quantitative cellular automaton model for biofilms. J Environ Eng 127:782–789 [CrossRef]
    [Google Scholar]
  32. Poppele E. H., Hozalski R. M. 2003; Micro-cantilever method for measuring the tensile strength of biofilms and microbial flocs. J Microbiol Methods 55:607–615 [CrossRef]
    [Google Scholar]
  33. Rittmann B. E., Schwarz A. O., Eberl H. J., Morgenroth E., Perez J., van Loosdrecht M., Wanner O. 2004; Results from the multi-species Benchmark Problem (BM3) using one-dimensional models. Water Sci Technol 49:163–168
    [Google Scholar]
  34. Skillman L. C., Sutherland I. W., Jones M. V. 1999; The role of exopolysaccharides in dual species biofilm development. J Appl Microbiol 85 :Suppl. 113S–18S
    [Google Scholar]
  35. Staudt C., Horn H., Hempel D. C., Neu T. R. 2004; Volumetric measurements of bacterial cells and extracellular polymeric substance glycoconjugates in biofilms. Biotechnol Bioeng 88:585–592 [CrossRef]
    [Google Scholar]
  36. Stewart P. S. 1993; A model of biofilm detachment. Biotechnol Bioeng 41:111–117 [CrossRef]
    [Google Scholar]
  37. Stewart P. S., McFeters G. A., Huang C. T. 2000; Biofilm control by antimicrobial agents. In Biofilms II: Process Analysis and Applications pp 373–405 Edited by Bryers J. D. New York: Wiley;
    [Google Scholar]
  38. Sutherland I. W. 2001; Biofilm exopolysaccharides: a strong and sticky framework. Microbiology 147:3–9
    [Google Scholar]
  39. Thormann K. M., Saville R. M., Shukla S., Spormann A. M. 2005; Induction of rapid detachment in Shewanella oneidensis MR-1 biofilms. J Bacteriol 187:1014–1021 [CrossRef]
    [Google Scholar]
  40. Tsuneda S., Aikawa H., Hayashi H., Yuasa A., Hirata A. 2003; Extracellular polymeric substances responsible for bacterial adhesion onto solid surface. FEMS Microbiol Lett 223:287–292 [CrossRef]
    [Google Scholar]
  41. Turakhia M. H., Cooksey K. E., Characklis W. G. 1983; Influence of a calcium-specific chelant on biofilm removal. Appl Environ Microbiol 46:1236–1238
    [Google Scholar]
  42. van Casteren W. H. M., Dijkema C., Schols H. A., Beldman G., Voragen A. G. J. 1998; Characterisation and modification of the exopolysaccharide produced by Lactococcus lactis subsp. cremoris B40. Carbohydr Polymers 37:123–130 [CrossRef]
    [Google Scholar]
  43. Wanner O., Gujer W. 1986; A multispecies biofilm model. Biotechnol Bioeng 28:314–328 [CrossRef]
    [Google Scholar]
  44. Whitchurch C. B., Tolker-Nielsen T., Ragas P. C., Mattick J. S. 2002; Extracellular DNA required for bacterial biofilm formation. Science 295:1487 [CrossRef]
    [Google Scholar]
  45. Wingender J., Neu T. R., Flemming H.-C. 1999; What are bacterial extracellular polymeric substances?. In Microbial Extracellular Polymeric Substances: CharacterizationStructure and Function pp 1–20 Edited by Wingender J., Neu T. R., Flemming H.-C. New York: Springer;
    [Google Scholar]
  46. Xavier J. B., Picioreanu C., van Loosdrecht M. C. M. 2004; A modelling study of the activity and structure of biofilms in biological reactors. Biofilms 1:377–391 [CrossRef]
    [Google Scholar]
  47. Xavier J. B., Picioreanu C., van Loosdrecht M. C. M. 2005a; A framework for multidimensional modelling of activity and structure of multispecies biofilms. Environ Microbiol 7:1085–1103 [CrossRef]
    [Google Scholar]
  48. Xavier J. B., Picioreanu C., van Loosdrecht M. C. M. 2005b; A general description of detachment for multidimensional modelling of biofilms. Biotechnol Bioeng 91:651–669 [CrossRef]
    [Google Scholar]
  49. Xun L., Mah R. A., Boone D. R. 1990; Isolation and characterization of disaggregatase from Methanosarcina mazei LYC. Appl Environ Microbiol 56:3693–3698
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.28165-0
Loading
/content/journal/micro/10.1099/mic.0.28165-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error