1887

Abstract

A kinetic model is proposed to assess the feasibility of strategies for the removal of biofilms by using substances that induce detachment by affecting the cohesiveness of the matrix of extracellular polymeric substances (EPSs). The model uses a two-state description of the EPS (natural EPS and compromised EPS) to provide a unified representation of diverse mechanisms of action of detachment-promoting agents (DPAs), which include enzymes that degrade the EPS and other agents described in the literature. A biofilm-cohesiveness factor describes local increases in detachment rates resultant from losses in cohesive strength. The kinetic model was implemented in an individual-based biofilm-modelling framework, including detachment rates dependent on local cohesiveness. The efficacy of treatments with DPAs was assessed by three-dimensional model simulations. Changes in treatment efficacy were evaluated quantitatively by using a Thiele modulus, which quantifies the relationship between diffusion of the DPA through the biofilm matrix and DPA decay rate, and a Damköhler number relating the rate of EPS reaction with a DPA and the rate of EPS production by the micro-organisms in the biofilm. This study demonstrates the feasibility and limits of implementing biofilm-control strategies based on attacking the EPS.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.28165-0
2005-12-01
2020-04-10
Loading full text...

Full text loading...

/deliver/fulltext/micro/151/12/3817.html?itemId=/content/journal/micro/10.1099/mic.0.28165-0&mimeType=html&fmt=ahah

References

  1. Abdul Rani S., Pitts B., Stewart P. S. 2005; Rapid diffusion of fluorescent tracers into Staphylococcus epidermidis biofilms visualized by time lapse microscopy. Antimicrob Agents Chemother49:728–732[CrossRef]
    [Google Scholar]
  2. Allison D. G., Ruiz B., SanJose C., Jaspe A., Gilbert P. 1998; Extracellular products as mediators of the formation and detachment of Pseudomonas fluorescens biofilms. FEMS Microbiol Lett167:179–184[CrossRef]
    [Google Scholar]
  3. Boyd A., Chakrabarty A. M. 1994; Role of alginate lyase in cell detachment of Pseudomonas aeruginosa . Appl Environ Microbiol60:2355–2359
    [Google Scholar]
  4. Boyd A., Chakrabarty A. M. 1995; Pseudomonas aeruginosa biofilms: role of the alginate exopolysaccharide. J Ind Microbiol Biotechnol15:162–168
    [Google Scholar]
  5. Chen X., Stewart P. S. 2000; Biofilm removal caused by chemical treatments. Water Res34:4229–4233[CrossRef]
    [Google Scholar]
  6. Chen X., Stewart P. S. 2002; Role of electrostatic interactions in cohesion of bacterial biofilms. Appl Microbiol Biotechnol59:718–720[CrossRef]
    [Google Scholar]
  7. Christensen B. E., Ertesvag H., Beyenal H., Lewandowski Z. 2001; Resistance of biofilms containing alginate-producing bacteria to disintegration by an alginate degrading enzyme (AlgL. Biofouling17:203–210[CrossRef]
    [Google Scholar]
  8. Cui W., Winter W. T., Tanenbaum S. W., Nakas J. P. 1999; Purification and characterization of an intracellular carboxylesterase from Arthrobacter viscosus NRRL B-1973: physical and spectroscopic characterization and evaluation as models for cellulose triacetate. Enzyme Microb Technol24:200–208[CrossRef]
    [Google Scholar]
  9. Gordon C. A., Hodges N. A., Marriott C. 1991; Use of slime dispersants to promote antibiotic penetration through the extracellular polysaccharide of mucoid Pseudomonas aeruginosa . Antimicrob Agents Chemother35:1258–1260[CrossRef]
    [Google Scholar]
  10. Grotenhuis J. T. C., van Lier J. B., Plugge C. M., Stams A. J. M., Zehnder A. J. B. 1991; Effect of ethylene glycol-bis( β -aminoethyl ether)- N , N -tetraacetic acid (EGTA) on stability and activity of methanogenic granular sludge. Appl Microbiol Biotechnol36:109–114[CrossRef]
    [Google Scholar]
  11. Hermanowicz S. W. 2001; A simple 2D biofilm model yields a variety of morphological features. Math Biosci169:1–14[CrossRef]
    [Google Scholar]
  12. Higgins M. J., Novak J. T. 1997; The effect of cations on the settling and dewatering of activated sludges: laboratory results. Water Environ Res69:215–224[CrossRef]
    [Google Scholar]
  13. Horn H., Neu T. R., Wulkow M. 2001; Modelling the structure and function of extracellular polymeric substances in biofilms with new numerical techniques. Water Sci Technol43:121–127
    [Google Scholar]
  14. Huebner J., Goldmann D. A. 1999; Coagulase-negative staphylococci: role as pathogens. Annu Rev Med50:223–236[CrossRef]
    [Google Scholar]
  15. Hughes K. A., Sutherland I. W., Jones M. V. 1998; Biofilm susceptibility to bacteriophage attack: the role of phage-borne polysaccharide depolymerase. Microbiology144:3039–3047[CrossRef]
    [Google Scholar]
  16. Hunt S. M., Hamilton M. A., Sears J. T., Harkin G., Reno J. 2003; A computer investigation of chemically mediated detachment in bacterial biofilms. Microbiology149:1155–1163[CrossRef]
    [Google Scholar]
  17. Hunt S. M., Werner E. M., Huang B., Hamilton M. A., Stewart P. S. 2004; Hypothesis for the role of nutrient starvation in biofilm detachment. Appl Environ Microbiol70:7418–7425[CrossRef]
    [Google Scholar]
  18. Itoh Y., Wang X., Hinnebusch B. J., Preston J. F., Romeo T III. 2005; Depolymerization of β -1,6- N -acetyl-d-glucosamine disrupts the integrity of diverse bacterial biofilms. J Bacteriol187:382–387[CrossRef]
    [Google Scholar]
  19. Jass J., Walker J. T. 2000; Biofilms and biofouling. In Industrial Biofouling: DetectionPrevention and Control pp1–12 Edited by Walker J. T., Surman S., Jass J.. New York: Wiley;
    [Google Scholar]
  20. Johansen C., Falholt P., Gram L. 1997; Enzymatic removal and disinfection of bacterial biofilms. Appl Environ Microbiol63:3724–3728
    [Google Scholar]
  21. Kaplan J. B., Ragunath C., Ramasubbu N., Fine D. H. 2003; Detachment of Actinobacillus actinomycetemcomitans biofilm cells by an endogenous β -hexosaminidase activity. J Bacteriol185:4693–4698[CrossRef]
    [Google Scholar]
  22. Kaplan J. B., Ragunath C., Velliyagounder K., Fine D. H., Ramasubbu N. 2004; Enzymatic detachment of Staphylococcus epidermidis biofilms. Antimicrob Agents Chemother48:2633–2636[CrossRef]
    [Google Scholar]
  23. Kreft J.-U., Wimpenny J. W. T. 2001; Effect of EPS on biofilm structure and function as revealed by an individual-based model of biofilm growth. Water Sci Technol43:135–141
    [Google Scholar]
  24. Lewandowski Z., Beyenal H., Stookey D. 2004; Reproducibility of biofilm processes and the meaning of steady state in biofilm reactors. Water Sci Technol49:359–364
    [Google Scholar]
  25. Mayer C., Moritz R., Kirschner C., Borchard W., Maibaum R., Wingender J., Flemming H.-C. 1999; The role of intermolecular interactions: studies on model systems for bacterial biofilms. Int J Biol Macromol26:3–16[CrossRef]
    [Google Scholar]
  26. Nielsen P. H., Frølund B., Keiding K. 1996; Changes in the composition of extracellular polymeric substances in activated sludge during anaerobic storage. Appl Microbiol Biotechnol44:823–830[CrossRef]
    [Google Scholar]
  27. Ohashi A., Harada H. 1996; A novel concept for evaluation of biofilm adhesion strength by applying tensile force and shear force. Water Sci Technol34:201–211
    [Google Scholar]
  28. Ohashi A., Koyama T., Syutsubo K., Harada H. 1999; A novel method for evaluation of biofilm tensile strength resisting erosion. Water Sci Technol39:261–268
    [Google Scholar]
  29. Picioreanu C., van Loosdrecht M. C. M., Heijnen J. J. 2001; Two-dimensional model of biofilm detachment caused by internal stress from liquid flow. Biotechnol Bioeng72:205–218[CrossRef]
    [Google Scholar]
  30. Picioreanu C., Kreft J.-U., van Loosdrecht M. C. M. 2004; Particle-based multidimensional multispecies biofilm model. Appl Environ Microbiol70:3024–3040[CrossRef]
    [Google Scholar]
  31. Pizarro G., Griffeath D., Noguera D. R. 2001; Quantitative cellular automaton model for biofilms. J Environ Eng127:782–789[CrossRef]
    [Google Scholar]
  32. Poppele E. H., Hozalski R. M. 2003; Micro-cantilever method for measuring the tensile strength of biofilms and microbial flocs. J Microbiol Methods55:607–615[CrossRef]
    [Google Scholar]
  33. Rittmann B. E., Schwarz A. O., Eberl H. J., Morgenroth E., Perez J., van Loosdrecht M., Wanner O. 2004; Results from the multi-species Benchmark Problem (BM3) using one-dimensional models. Water Sci Technol49:163–168
    [Google Scholar]
  34. Skillman L. C., Sutherland I. W., Jones M. V. 1999; The role of exopolysaccharides in dual species biofilm development. J Appl Microbiol85 :Suppl. 113S–18S
    [Google Scholar]
  35. Staudt C., Horn H., Hempel D. C., Neu T. R. 2004; Volumetric measurements of bacterial cells and extracellular polymeric substance glycoconjugates in biofilms. Biotechnol Bioeng88:585–592[CrossRef]
    [Google Scholar]
  36. Stewart P. S. 1993; A model of biofilm detachment. Biotechnol Bioeng41:111–117[CrossRef]
    [Google Scholar]
  37. Stewart P. S., McFeters G. A., Huang C. T. 2000; Biofilm control by antimicrobial agents. In Biofilms II: Process Analysis and Applications pp373–405 Edited by Bryers J. D.. New York: Wiley;
    [Google Scholar]
  38. Sutherland I. W. 2001; Biofilm exopolysaccharides: a strong and sticky framework. Microbiology147:3–9
    [Google Scholar]
  39. Thormann K. M., Saville R. M., Shukla S., Spormann A. M. 2005; Induction of rapid detachment in Shewanella oneidensis MR-1 biofilms. J Bacteriol187:1014–1021[CrossRef]
    [Google Scholar]
  40. Tsuneda S., Aikawa H., Hayashi H., Yuasa A., Hirata A. 2003; Extracellular polymeric substances responsible for bacterial adhesion onto solid surface. FEMS Microbiol Lett223:287–292[CrossRef]
    [Google Scholar]
  41. Turakhia M. H., Cooksey K. E., Characklis W. G. 1983; Influence of a calcium-specific chelant on biofilm removal. Appl Environ Microbiol46:1236–1238
    [Google Scholar]
  42. van Casteren W. H. M., Dijkema C., Schols H. A., Beldman G., Voragen A. G. J. 1998; Characterisation and modification of the exopolysaccharide produced by Lactococcus lactis subsp. cremoris B40. Carbohydr Polymers37:123–130[CrossRef]
    [Google Scholar]
  43. Wanner O., Gujer W. 1986; A multispecies biofilm model. Biotechnol Bioeng28:314–328[CrossRef]
    [Google Scholar]
  44. Whitchurch C. B., Tolker-Nielsen T., Ragas P. C., Mattick J. S. 2002; Extracellular DNA required for bacterial biofilm formation. Science295:1487[CrossRef]
    [Google Scholar]
  45. Wingender J., Neu T. R., Flemming H.-C. 1999; What are bacterial extracellular polymeric substances?. In Microbial Extracellular Polymeric Substances: CharacterizationStructure and Function pp1–20 Edited by Wingender J., Neu T. R., Flemming H.-C.. New York: Springer;
    [Google Scholar]
  46. Xavier J. B., Picioreanu C., van Loosdrecht M. C. M. 2004; A modelling study of the activity and structure of biofilms in biological reactors. Biofilms1:377–391[CrossRef]
    [Google Scholar]
  47. Xavier J. B., Picioreanu C., van Loosdrecht M. C. M. 2005a; A framework for multidimensional modelling of activity and structure of multispecies biofilms. Environ Microbiol7:1085–1103[CrossRef]
    [Google Scholar]
  48. Xavier J. B., Picioreanu C., van Loosdrecht M. C. M. 2005b; A general description of detachment for multidimensional modelling of biofilms. Biotechnol Bioeng91:651–669[CrossRef]
    [Google Scholar]
  49. Xun L., Mah R. A., Boone D. R. 1990; Isolation and characterization of disaggregatase from Methanosarcina mazei LYC. Appl Environ Microbiol56:3693–3698
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.28165-0
Loading
/content/journal/micro/10.1099/mic.0.28165-0
Loading

Data & Media loading...

Most cited this month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error