1887

Abstract

This report shows that catabolizes ethanolamine to acetyl-CoA (Ac-CoA), which enters the glyoxylate bypass and tricarboxylic acid cycle for the generation of energy and central metabolites. During growth on ethanolamine, excreted acetate, whose recapture depended on Ac-CoA synthetase (Acs) and the housekeeping phosphotransacetylase (Pta) enzyme activities. The Pta enzyme did not play a role in acetate excretion during growth of on ethanolamine. It is proposed that during growth on ethanolamine, acetate excretion is necessary to maintain a pool of free CoA. Acetate excretion requires the operon-encoded phosphotransacetylase (EutD) and acetate kinase (Ack) enzymes. EutD function was not required for growth on ethanolamine, and an strain showed only a slight reduction in growth rate. The existence of an as-yet-unidentified system that releases acetate was revealed during growth of a strain lacking Acs, the housekeeping phosphotransacetylase (Pta), and EutD. The functions of pyruvate oxidase (PoxB), Ack and STM3118 protein [a homologue of the Ac-CoA hydrolase (Ach1p) enzyme] were not involved in the release of acetate by the strain.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.28156-0
2005-11-01
2020-04-08
Loading full text...

Full text loading...

/deliver/fulltext/micro/151/11/3793.html?itemId=/content/journal/micro/10.1099/mic.0.28156-0&mimeType=html&fmt=ahah

References

  1. Babior B. M. 1982; Ethanolamine ammonia-lyase. In B 12 pp263–288 Edited by Dolphin D.. New York: Wiley;
    [Google Scholar]
  2. Badger M. R., Price G. D. 2003; CO2 concentrating mechanisms in cyanobacteria: molecular components, their diversity and evolution. J Exp Bot54:609–622[CrossRef]
    [Google Scholar]
  3. Baker S. H., Williams D. S., Aldrich H. C., Gambrell A. C., Shively J. M. 2000; Identification and localization of the carboxysome peptide Csos3 and its corresponding gene in Thiobacillus neapolitanus . Arch Microbiol173:278–283[CrossRef]
    [Google Scholar]
  4. Balch W. E., Wolfe R. S. 1976; New approach to the cultivation of methanogenic bacteria: 2-mercaptoethanesulfonic acid (HS-CoM)-dependent growth of Methanobacterium ruminantium in a pressurized atmosphere. Appl Environ Microbiol32:781–791
    [Google Scholar]
  5. Berkowitz D., Hushon J. M., Whitfield H. J., Roth J., Ames B. N. 1968; Procedure for identifying nonsense mutations. J Bacteriol96:215–220
    [Google Scholar]
  6. Blackwell C. M., Turner J. M. 1978; Microbial metabolism of amino alcohols: formation of coenzyme B12-dependent ethanolamine ammonia-lyase and its concerted induction in Escherichia coli . Biochem J176:751–757
    [Google Scholar]
  7. Bobik T. A., Xu Y., Jeter R. M., Otto K. E., Roth J. R. 1997; Propanediol utilization genes ( pdu ) of Salmonella typhimurium : three genes for the propanediol dehydratase. J Bacteriol179:6633–6639
    [Google Scholar]
  8. Bobik T. A., Havemann G. D., Busch R. J., Williams D. S., Aldrich H. C. 1999; The propanediol utilization ( pdu ) operon of Salmonella enterica serovar Typhimurium LT2 includes genes necessary for formation of polyhedral organelles involved in coenzyme B12-dependent 1,2-propanediol degradation. J Bacteriol181:5967–5975
    [Google Scholar]
  9. Brinsmade S. R., Escalante-Semerena J. C. 2004; The eutD gene of Salmonella enterica encodes a protein with phosphotransacetylase enzyme activity. J Bacteriol186:1890–1892[CrossRef]
    [Google Scholar]
  10. Browning D. F., Beatty C. M., Sanstad E. A., Gunn K. E., Busby S. J., Wolfe A. J. 2004; Modulation of CRP-dependent transcription at the Escherichia coli acs P2 promoter by nucleoprotein complexes: anti-activation by the nucleoid proteins FIS and IHF. Mol Microbiol51:241–254
    [Google Scholar]
  11. Buu L. M., Chen Y. C., Lee F. J. 2003; Functional characterization and localization of acetyl-CoA hydrolase, Ach1p, in Saccharomyces cerevisiae . J Biol Chem278:17203–17209[CrossRef]
    [Google Scholar]
  12. Chan R. K., Botstein D., Watanabe T., Ogata Y. 1972; Specialized transduction of tetracycline resistance by phage P22 in Salmonella typhimurium . II. Properties of a high transducing lysate. Virology50:883–898[CrossRef]
    [Google Scholar]
  13. Chang G. W., Chang J. T. 1975; Evidence for the B12-dependent enzyme ethanolamine deaminase in Salmonella . Nature254:150–151[CrossRef]
    [Google Scholar]
  14. Conner C. P., Heithoff D. M., Julio S. M., Sinsheimer R. L., Mahan M. J. 1998; Differential patterns of acquired virulence genes distinguish Salmonella strains. Proc Natl Acad Sci U S A95:4641–4645[CrossRef]
    [Google Scholar]
  15. Datsenko K. A., Wanner B. L. 2000; One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci U S A97:6640–6645[CrossRef]
    [Google Scholar]
  16. Davis R. W., Botstein D., Roth J. R. 1980; A Manual for Genetic Engineering: Advanced Bacterial Genetics Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  17. Faust L. P., Connor J. A., Roof D. M., Hoch J. A., Babior B. M. 1990; Cloning, sequencing and expression of the genes encoding the adenosylcobalamin-dependent ethanolamine ammonia-lyase of Salmonella typhimurium . J Biol Chem265:12462–12466
    [Google Scholar]
  18. Friedberg D., Jager K. M., Kessel M., Silman N. J., Bergman B. 1993; Rubisco but not Rubisco activase is clustered in the carboxysomes of the cyanobacterium Synechococcus sp. PCC 7942: Mud-induced carboxysomeless mutants. Mol Microbiol9:1193–1201[CrossRef]
    [Google Scholar]
  19. Guzman L.-M., Belin D., Carson M. J., Beckwith J. 1995; Tight regulation, modulation, and high-level expression by vectors containing arabinose PBAD promoter. J Bacteriol177:4121–4130
    [Google Scholar]
  20. Havemann G. D., Bobik T. A. 2003; Protein content of polyhedral organelles involved in coenzyme B12-dependent degradation of 1,2-propanediol in Salmonella enterica serovar Typhimurium LT2. J Bacteriol185:5086–5095[CrossRef]
    [Google Scholar]
  21. Havemann G. D., Sampson E. M., Bobik T. A. 2002; PduA is a shell protein of polyhedral organelles involved in coenzyme B12-dependent degradation of 1,2-propanediol in Salmonella enterica serovar Typhimurium LT2. J Bacteriol184:1253–1261[CrossRef]
    [Google Scholar]
  22. Kofoid E., Rappleye C., Stojiljkovic I., Roth J. 1999; The 17-gene ethanolamine ( eut ) operon of Salmonella typhimurium encodes five homologues of carboxysome shell proteins. J Bacteriol181:5317–5329
    [Google Scholar]
  23. Leal N. A., Havemann G. D., Bobik T. A. 2003; PduP is a coenzyme-A-acylating propionaldehyde dehydrogenase associated with the polyhedral bodies involved in B12-dependent 1,2-propanediol degradation by Salmonella enterica serovar Typhimurium LT2. Arch Microbiol180:353–361[CrossRef]
    [Google Scholar]
  24. Roe A. J., McLaggan D., Davidson I., O'Byrne C., Booth I. R. 1998; Perturbation of anion balance during inhibition of growth of Escherichia coli by weak acids. J Bacteriol180:767–772
    [Google Scholar]
  25. Rondon M. R., Kazmierczak R., Escalante-Semerena J. C. 1995; Glutathione is required for maximal transcription of the cobalamin biosynthetic and 1,2-propanediol utilization ( cob/pdu ) regulon and for the catabolism of ethanolamine, 1,2-propanediol, and propionate in Salmonella typhimurium LT2. J Bacteriol177:5434–5439
    [Google Scholar]
  26. Roof D. M., Roth J. R. 1988; Ethanolamine utilization in Salmonella typhimurium . J Bacteriol170:3855–3863
    [Google Scholar]
  27. Roof D. M., Roth J. R. 1989; Functions required for vitamin B12-dependent ethanolamine utilization in Salmonella typhimurium . J Bacteriol171:3316–3323
    [Google Scholar]
  28. Roof D. M., Roth J. R. 1992; Autogenous regulation of ethanolamine utilization by a transcriptional activator of the eut operon in Salmonella typhimurium . J Bacteriol174:6634–6643
    [Google Scholar]
  29. Russell J. B., Diez-Gonzalez F. 1998; The effects of fermentation acids on bacterial growth. Adv Microb Physiol39:205–234
    [Google Scholar]
  30. Schmieger H. 1971; A method for detection of phage mutants with altered transduction ability. Mol Gen Genet100:378–381
    [Google Scholar]
  31. Schmieger H., Bakhaus H. 1973; The origin of DNA in transducing particles of P22 mutants with increased transduction frequencies (HT-mutants). Mol Gen Genet120:181–190[CrossRef]
    [Google Scholar]
  32. Sheppard D. E., Roth J. R. 1994; A rationale for autoinduction of a transcriptional activator: ethanolamine ammonia-lyase (EutBC) and the operon activator (EutR) compete for adenosyl-cobalamin in Salmonella typhimurium . J Bacteriol176:1287–1296
    [Google Scholar]
  33. Shimizu M., Suzuki T., Kameda K. Y., Abiko Y. 1969; Phosphotransacetylase of Escherichia coli B, purification and properties. Biochim Biophys Acta191:550–558[CrossRef]
    [Google Scholar]
  34. Stojiljkovic I., Bäumler A. J., Heffron F. 1995; Ethanolamine utilization in Salmonella typhimurium : nucleotide sequence, protein expression, and mutational analysis of the cchA cchB eutE eutj eutH gene cluster. J Bacteriol177:1357–1366
    [Google Scholar]
  35. Suzuki T. 1969; Phosphotransacetylase of Escherichia coli B, activation by pyruvate and inhibition by NADH and certain nucleotides. Biochim Biophys Acta191:559–569[CrossRef]
    [Google Scholar]
  36. Way J. C., Davis M. A., Morisato D., Roberts D. E., Kleckner N. 1984; New Tn 10 derivatives for transposon mutagenesis and for construction of lacZ operon fusions by transposition. Gene32:369–379[CrossRef]
    [Google Scholar]
  37. Wolfe A. J. 2005; The acetate switch. Microbiol Mol Biol Rev69:12–50[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.28156-0
Loading
/content/journal/micro/10.1099/mic.0.28156-0
Loading

Data & Media loading...

Most cited this month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error