1887

Abstract

Spontaneous phenotypic degeneration resulting in sterile sectors is frequently observed when culturing filamentous fungi on artificial medium. Sterile sectors from two different strains of the insect pathogenic fungus were investigated and found to contain reduced levels of cAMP and destruxins (insecticidal peptides). Microarray analysis using slides printed with 1730 clones showed that compared to wild-type, sterile sectors down-regulated 759 genes and upregulated 27 genes during growth in Sabouraud glucose broth or on insect cuticle. The differentially expressed genes are largely involved in cell metabolism (18·8 %), cell structure and function (13·6 %) and protein metabolism (8·8 %). Strong oxidative stress was demonstrated in sectorial cultures using the nitro blue tetrazolium assay and these cultures show other syndromes associated with ageing, including mitochondrial DNA alterations. However, genes involved in deoxidation and self-protection (e.g. heat-shock proteins, HSPs) were also upregulated. Further evidence of physiological adaptation by the degenerative sectorial cultures included cell-structure reorganization and the employment of additional signalling pathways. In spite of their very similar appearance, microarray analysis identified 181 genes differentially expressed between the two sectors, and the addition of exogenous cAMP only restored conidiation in one of them. Most of the differentially expressed genes were involved in catabolic or anabolic pathways, but the latter included genes for sporulation. Compared to the mammalian ageing process, sectorization in showed many similarities, including similar patterns of cAMP production, oxidative stress responses and the involvement of HSPs. Thus, a common molecular machinery for ageing may exist throughout the eukaryotes.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.28148-0
2005-10-01
2019-10-15
Loading full text...

Full text loading...

/deliver/fulltext/micro/151/10/3223.html?itemId=/content/journal/micro/10.1099/mic.0.28148-0&mimeType=html&fmt=ahah

References

  1. Adachi, K. & Hamer, J. E. ( 1998; ). Divergent cAMP signaling pathways regulate growth and pathogenesis in the rice blast fungus Magnaporthe grisea. Plant Cell 10, 1361–1373.[CrossRef]
    [Google Scholar]
  2. Agarraberes, F. A. & Dice, J. F. ( 2001; ). A molecular chaperone complex at the lysosomal membrane is required for protein translocation. J Cell Sci 114, 2491–2499.
    [Google Scholar]
  3. Amillet, J. M., Buisson, N. & Labbe-Bois, R. ( 1995; ). Positive and negative elements involved in the differential regulation by heme and oxygen of the HEM13 gene (coproporphyrinogen oxidase) in Saccharomyces cerevisiae. Curr Genet 28, 503–511.[CrossRef]
    [Google Scholar]
  4. Arana, D. M., Nombela, C., Alonso-Monge, R. & Pla, J. ( 2005; ). The Pbs2 MAP kinase kinase is essential for the oxidative-stress response in the fungal pathogen Candida albicans. Microbiology 151, 1033–1049.[CrossRef]
    [Google Scholar]
  5. Balaban, R. S., Nemoto, S. & Finkel, T. ( 2005; ). Mitochondria, oxidants, and aging. Cell 120, 483–495.[CrossRef]
    [Google Scholar]
  6. Bard, M., Bruner, D. A., Pierson, C. A., Lees, N. D., Biermann, B., Frye, L., Koegel, C. & Barbuch, R. ( 1996; ). Cloning and characterization of ERG25, the Saccharomyces cerevisiae gene encoding C-4 sterol methyl oxidase. Proc Natl Acad Sci U S A 9, 186–190.
    [Google Scholar]
  7. Bertrand, H. ( 2000; ). Role of mitochondrial DNA in the senescence and hypovirulence of fungi and potential for plant disease control. Annu Rev Phytopathol 38, 397–422.[CrossRef]
    [Google Scholar]
  8. Borghouts, C., Kimpel, E. & Osiewacz, H. D. ( 1997; ). Mitochondrial DNA rearrangements of Podospora anserina are under the control of the nuclear gene grisea. Proc Natl Acad Sci U S A 94, 10768–10773.[CrossRef]
    [Google Scholar]
  9. Borghouts, C., Kerschner, S. & Osiewacz, H. D. ( 2000; ). Copper-dependence of mitochondrial DNA rearrangements in Podospora anserina. Curr Genet 37, 268–275.[CrossRef]
    [Google Scholar]
  10. Borghouts, C., Werner, A., Elthon, T. & Osiewacz, H. D. ( 2001; ). Copper-modulated gene expression and senescence in the filamentous fungus Podospora anserina. Mol Cell Biol 21, 390–399.[CrossRef]
    [Google Scholar]
  11. Bowles, J. T. ( 1998; ). The evolution of aging: a new approach to an old problem of biology. Med Hypotheses 51, 179–221.[CrossRef]
    [Google Scholar]
  12. Briza, P., Bogengruber, E., Thur, A., Rutzler, M., Munsterkotter, M., Dawes, I. W. & Breitenbach, M. ( 2002; ). Systematic analysis of sporulation phenotypes in 624 non-lethal homozygous deletion strains of Saccharomyces cerevisiae. Yeast 19, 403–422.[CrossRef]
    [Google Scholar]
  13. Butt, T. M., Jackson, C. & Magan, N. ( 2001; ). Introduction – fungal biological control agents: progress, problems and potential. In Fungal Biological Control Agents: Progress, Problems and Potential, pp. 1–8. Edited by T. M. Butt, C. Jackson & N. Magan. Oxford: CAB International.
  14. Camougrand, N., Kissova, I., Velours, G. & Manon, S. ( 2004; ). Uth1p: a yeast mitochondrial protein at the crossroads of stress, degradation and cell death. FEMS Yeast Res 5, 133–140.[CrossRef]
    [Google Scholar]
  15. Da Silva, S. P., Borges-Walmsley, M. I., Pereira, I. S., Soares, C. M., Walmsley, A. R. & Felipe, M. S. ( 1999; ). Differential expression of an hsp70 gene during transition from the mycelial to the infective yeast form of the human pathogenic fungus Paracoccidioides brasiliensis. Mol Microbiol 31, 1039–1050.[CrossRef]
    [Google Scholar]
  16. Dawe, A. L. & Nuss, D. L. ( 2001; ). Hypoviruses and chestnut blight: exploiting viruses to understand and modulate fungal pathogenesis. Annu Rev Genet 35, 1–29.[CrossRef]
    [Google Scholar]
  17. Debets, F., Yang, X. & Griffiths, A. J. ( 1994; ). Vegetative incompatibility in Neurospora: its effect on horizontal transfer of mitochondrial plasmids and senescence in natural populations. Curr Genet 26, 113–119.[CrossRef]
    [Google Scholar]
  18. Dufour, E., Boulay, J., Rincheval, V. & Sainsard-Chanet, A. ( 2000; ). A causal link between respiration and senescence in Podospora anserina. Proc Natl Acad Sci U S A 97, 4138–4143.[CrossRef]
    [Google Scholar]
  19. Fargues, J. F. & Robert, P. H. ( 1983; ). Effect of passaging through scarabaeid hosts on the virulence and host specificity of two strains of the entomopathogenic hyphomycete Metarhizium anisopliae. Can J Microbiol 29, 575–583.
    [Google Scholar]
  20. Fillinger, S., Chaveroche, M.-K., Shimizu, K., Keller, N. & d'Enfert, C. ( 2002; ). cAMP and ras signalling independently control spore germination in the filamentous fungus Aspergillus nidulans. Mol Microbiol 44, 1001–1016.[CrossRef]
    [Google Scholar]
  21. Flikweert, M. T., van der Zanden, L., Janssen, W. M., Steensma, H. Y., van Dijken, J. P. & Pronk, J. T. ( 1996; ). Pyruvate decarboxylase: an indispensable enzyme for growth of Saccharomyces cerevisiae on glucose. Yeast 12, 247–257.[CrossRef]
    [Google Scholar]
  22. Freimoser, F. M., Screen, S., Bagga, S., Hu, G. & St Leger, R. J. ( 2003; ). Expressed sequence tag (EST) analysis of two subspecies of Metarhizium anisopliae reveals a plethora of secreted proteins with potential activity in insect hosts. Microbiology 149, 239–247.[CrossRef]
    [Google Scholar]
  23. Freimoser, F. M., Hu, G. & St Leger, R. J. ( 2005; ). Variation in gene expression patterns as the insect pathogen Metarhizium anisopliae adapts to different host cuticle or nutrient deprivation in vitro. Microbiology 151, 361–371.[CrossRef]
    [Google Scholar]
  24. Friesen, H., Hepworth, S. R. & Segall, J. ( 1997; ). An Ssn6-Tup1-dependent negative regulatory element controls sporulation-specific expression of DIT1 and DIT2 in Saccharomyces cerevisiae. Mol Cell Biol 17, 123–134.
    [Google Scholar]
  25. Gerhold, L. M., Rosewell, K. L. & Wise, P. M. ( 2005; ). Suppression of vasoactive intestinal polypeptide in the suprachiasmatic nucleus leads to aging-like alterations in cAMP rhythms and activation of gonadotropin-releasing hormone neurons. J Neurosci 25, 62–67.[CrossRef]
    [Google Scholar]
  26. Glass, N. L. & Kaneko, I. ( 2003; ). Fatal attraction: nonself recognition and heterokaryon incompatibility in filamentous fungi. Eukaryot Cell 2, 1–8.[CrossRef]
    [Google Scholar]
  27. Gramss, G. ( 1991; ). Appearance of senescent sectors in the aging vegetative thallus of several basidiomycetous fungi held in pure culture. J Basic Microbiol 31, 113–120.[CrossRef]
    [Google Scholar]
  28. Griffiths, A. J. F. ( 1992; ). Fungal senescence. Annu Rev Genet 26, 351–372.[CrossRef]
    [Google Scholar]
  29. Guzman-de-Pena, D. & Ruiz-Herrera, J. ( 1997; ). Relationship between aflatoxin biosynthesis and sporulation in Aspergillus parasiticus. Fungal Genet Biol 21, 198–205.[CrossRef]
    [Google Scholar]
  30. Hayden, T. P., Bidochka, M. J. & Khachatourians, G. G. ( 1992; ). Entomopathogenicity of several fungi toward the English grain aphid (Homoptera: Aphididae) and enhancement of virulence with host passage of Paecilomyces farinosus. J Econ Entomol 85, 58–64.[CrossRef]
    [Google Scholar]
  31. Horgen, P. A., Carvalho, D., Sonnenberg, A., Li, A. & van Griensven, L. J. L. D. ( 1996; ). Chromosomal abnormalities associated with strain degeneration in the cultivated mushroom, Agaricus bisporus. Fungal Genet Biol 20, 229–241.[CrossRef]
    [Google Scholar]
  32. Huang, K. M., d'Hondt, K., Riezman, H. & Lemmon, S. K. ( 1999; ). Clathrin functions in the absence of heterotetrameric adaptors and AP180-related proteins in yeast. EMBO J 18, 3897–3908.[CrossRef]
    [Google Scholar]
  33. Hwang, C. S., Flaishman, M. A. & Kolattukudy, P. E. ( 1995; ). Cloning of a gene expressed during appressorium formation by Colletotrichum gloeosporioides and a marked decrease in virulence by disruption of this gene. Plant Cell 7, 183–193.[CrossRef]
    [Google Scholar]
  34. Joseph-Horne, T., Hollomon, D. W. & Wood, P. W. ( 2001; ). Fungal respiration: a fusion of standard and alternative components. Biochim Biophys Acta 1504, 179–195.[CrossRef]
    [Google Scholar]
  35. Kale, S. & Bennett, J. W. ( 1992; ). Strain instability in filamentous fungi. In Handbook of Applied Mycology, vol. 5, pp. 311–331. New York: Dekker.
  36. Kale, S. P., Cary, J. W., Baker, C., Walker, D., Bhatnagar, D. & Bennett, J. W. ( 2003; ). Genetic analysis of morphological variants of Aspergillus parasiticus deficient in secondary metabolite production. Mycol Res 107, 831–840.[CrossRef]
    [Google Scholar]
  37. Kamp, A. M. & Bidochka, M. J. ( 2002; ). Protein analysis in a pleomorphically deteriorated strain of the insect-pathogenic fungus Metarhizium anisopliae. Can J Microbiol 48, 787–792.[CrossRef]
    [Google Scholar]
  38. Kim, D. H. ( 1997; ). Induced change in DNA methylation of Fusarium oxysporum f. sp. niveum due to successive transfer. J Biochem Mol Biol 30, 216–221.
    [Google Scholar]
  39. Klionsky, D. J. & Emr, S. D. ( 2000; ). Autophagy as a regulated pathway of cellular degradation. Science 290, 1717–1721.[CrossRef]
    [Google Scholar]
  40. Lambowitz, A. M. ( 1979; ). Preparation and analysis of mitochondrial ribosomes. Methods Enzymol 59, 421–433.
    [Google Scholar]
  41. Lara-Ortiz, T., Riveros-Rosas, H. & Aguirre, J. ( 2003; ). Reactive oxygen species generated by microbial NADPH oxidase NoxA regulate sexual development in Aspergillus nidulans. Mol Microbiol 50, 1241–1255.[CrossRef]
    [Google Scholar]
  42. Li, A., Begin, M., Kokurewicz, K., Bowden, C. & Horgen, P. A. ( 1994; ). Inheritance of strain instability (sectoring) in the commercial button mushroom, Agaricus bisporus. Appl Environ Microbiol 60, 2384–2388.
    [Google Scholar]
  43. Liu, L., Zeng, M., Hausladen, A., Heitman, J. & Stamler, J. S. ( 2000; ). Protection from nitrosative stress by yeast flavohemoglobin. Proc Natl Acad Sci U S A 97, 4672–4676.[CrossRef]
    [Google Scholar]
  44. Loubradou, G., Begueret, J. & Turcq, B. ( 1997; ). A mutation in an HSP90 gene affects the sexual cycle and suppresses vegetative incompatibility in the fungus Podospora anserina. Genetics 147, 581–588.
    [Google Scholar]
  45. Loubradou, G., Begueret, J. & Turcq, B. ( 1999; ). MOD-D, a G alpha subunit of the fungus Podospora anserina, is involved in both regulation of development and vegetative incompatibility. Genetics 152, 519–528.
    [Google Scholar]
  46. Maggio, A., Miyazaki, S., Veronese, P. & 7 other authors ( 2002; ). Does proline accumulation play an active role in stress-induced growth reduction? Plant J 31, 699–712.[CrossRef]
    [Google Scholar]
  47. Maresca, B. & Kobayashi, G. ( 1993; ). Changes in membrane fluidity modulate heat shock gene expression and produced attenuated strains in the dimorphic fungus Histoplasma capsulatum. Arch Med Res 24, 247–249.
    [Google Scholar]
  48. Martinez, M., Pramanik, A., Moto-Ndje, S. & Moore, C. W. ( 2003; ). Overexpression of genes involved in vesicular trafficking to the vacuole defends against lethal effects of oxidative damage. Cell Mol Biol 49, 1025–1035.
    [Google Scholar]
  49. Metcalf, T., Kelley, K., Erdos, G. W., Kaplan, L. & West, C. M. ( 2003; ). Formation of the outer layer of the Dictyostelium spore coat depends on the inner-layer protein SP85/PsB. Microbiology 149, 305–317.[CrossRef]
    [Google Scholar]
  50. Morrow, B. J., Boucias, D. G. & Heath, M. A. ( 1989; ). Loss of virulence in an isolate of an entomopathogenic fungus, Nomuraea rileyi, after in vitro passage. J Econ Entomol 82, 404–407.[CrossRef]
    [Google Scholar]
  51. Osiewacz, H. D. & Scheckhuber, C. Q. ( 2002; ). Senescence in Podospora anserina. In Molecular Biology of Fungal Development, pp. 87–108. Edited by H. D. Osiewacz. New York: Marcel Dekker.
  52. Pan, W. A. ( 2002; ). Comparative review of statistical methods for discovering differentially expressed genes in replicated microarray experiments. Bioinformatics 18, 546–554.[CrossRef]
    [Google Scholar]
  53. Pinan-Lucarre, B., Paoletti, M., Dementhon, K., Coulary-Salin, B. & Clave, C. ( 2003; ). Autophagy is induced during cell death by incompatibility and is essential for differentiation in the filamentous fungus Podospora anserina. Mol Microbiol 47, 321–333.[CrossRef]
    [Google Scholar]
  54. Rerngsamran, P., Murphy, M. B., Doyle, S. A. & Ebbole, D. J. ( 2005; ). Fluffy, the major regulator of conidiation in Neurospora crassa, directly activates a developmentally regulated hydrophobin gene. Mol Microbiol 56, 282–297.[CrossRef]
    [Google Scholar]
  55. Roberts, D. W. & St Leger, R. J. ( 2004; ). Metarhizium spp., cosmopolitan insect-pathogenic fungi: mycological aspects. Adv Appl Microbiol 54, 1–70.
    [Google Scholar]
  56. Rosenfeld, E. & Beauvoit, B. ( 2003; ). Role of the non-respiratory pathways in the utilization of molecular oxygen by Saccharomyces cerevisiae. Yeast 20, 1115–1144.[CrossRef]
    [Google Scholar]
  57. Rutherford, S. L. ( 2003; ). Between genotype and phenotype: protein chaperones and evolvability. Nat Rev Genet 4, 263–274.[CrossRef]
    [Google Scholar]
  58. Ryan, M. J., Bridge, P. D., Smith, D. & Jeffries, P. ( 2002; ). Phenotypic degeneration occurs during sector formation in Metarhizium anisopliae. J Appl Microbiol 93, 163–168.[CrossRef]
    [Google Scholar]
  59. Ryan, M. J., Smith, D., Bridge, P. D. & Jeffries, P. ( 2003; ). The relationship between fungal preservation method and secondary metabolite production in Metarhizium anisopliae and Fusarium oxysporum. World J Microbiol Biotechnol 19, 839–844.[CrossRef]
    [Google Scholar]
  60. Salvador, N., Aguado, C., Horst, M. & Knecht, E. ( 2000; ). Import of a cytosolic protein into lysosomes by chaperone-mediated autophagy depends on its folding state. J Biol Chem 275, 27447–27456.
    [Google Scholar]
  61. Sarkar, S., Iyer, G., Wu, J. & Glass, N. L. ( 2002; ). Nonself recognition is mediated by HET-C heterocomplex formation during vegetative incompatibility. EMBO J 21, 4841–4850.[CrossRef]
    [Google Scholar]
  62. Schultz, J. & Carlson, M. ( 1987; ). Molecular analysis of SSN6, a gene functionally related to the SNF1 protein kinase of Saccharomyces cerevisiae. Mol Cell Biol 7, 3637–3645.
    [Google Scholar]
  63. Seidel-Rogol, B. L., King, J. & Bertrand, H. ( 1989; ). Unstable mitochondrial DNA in natural-death mutants of Neurospora crassa. Mol Cell Biol 9, 4259–4264.
    [Google Scholar]
  64. Shintani, T. & Klionsky, D. J. ( 2004; ). Autophagy in health and disease: a double-edged sword. Science 306, 990–995.[CrossRef]
    [Google Scholar]
  65. Sohal, R. S. & Weindruch, R. ( 1996; ). Oxidative stress, caloric restriction, and aging. Science 273, 59–63.[CrossRef]
    [Google Scholar]
  66. Sreedhar, A. S. & Csermely, P. ( 2004; ). Heat shock proteins in the regulation of apoptosis: new strategies in tumor therapy: a comprehensive review. Pharmacol Ther 101, 227–257.[CrossRef]
    [Google Scholar]
  67. Srinivasan, S., Griffiths, K. R., McGuire, V., Champion, A., Williams, K. L. & Alexander, S. ( 2000; ). The cellulose-binding activity of the PsB multiprotein complex is required for proper assembly of the spore coat and spore viability in Dictyostelium discoideum. Microbiology 146, 1829–1839.
    [Google Scholar]
  68. Wang, S. W., Norbury, C., Harris, A. L. & Toda, T. ( 1999; ). Caffeine can override the S-M checkpoint in fission yeast. J Cell Sci 112, 927–937.
    [Google Scholar]
  69. Wang, C.-S., Skrobek, A. & Butt, T. M. ( 2003; ). Concurrence of losing a chromosome and the ability to produce destruxins in a mutant of Metarhizium anisopliae. FEMS Microbiol Lett 226, 373–378.[CrossRef]
    [Google Scholar]
  70. Wang, C.-S., Skrobek, A. & Butt, T. M. ( 2004; ). Investigations on the destruxin production of the entomopathogenic fungus Metarhizium anisopliae. J Invertebr Pathol 85, 168–174.[CrossRef]
    [Google Scholar]
  71. Wang, C.-S. & St Leger, R. J. ( 2005; ). Developmental and transcriptional responses to host and non host cuticles by the specific locust pathogen Metarhizium anisopliae var. acridum. Eukaryot Cell 5, 937–947.
    [Google Scholar]
  72. Wang, C.-S., Hu, G. & St Leger, R. J. ( 2005; ). Differential gene expression by Metarhizium anisopliae growing in root exudate and host (Manduca sexta) cuticle or hemolymph reveals mechanisms of physiological adaptation. Fungal Genet Biol 24, 704–718.
    [Google Scholar]
  73. Wing, N., Burgess, L. W. & Bryden, W. L. ( 1995; ). Cultural degeneration in two Fusarium species and its effect on toxigenicity and cultural morphology. Mycol Res 99, 615–620.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.28148-0
Loading
/content/journal/micro/10.1099/mic.0.28148-0
Loading

Data & Media loading...

Supplements

vol. , part 10, pp. 3223–3236

Microarray data demonstrating the transcriptional variations of sectors grown in different media link text(2.4 MB)



WORD
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error