1887

Abstract

Specialized lytic transglycosylases are muramidases capable of locally degrading the peptidoglycan meshwork of Gram-negative bacteria. Specialized lytic transglycosylase genes are present in clusters encoding diverse macromolecular transport systems. This paper reports the analysis of selected members of the specialized lytic transglycosylase family from type III and type IV secretion systems. These proteins were analysed by assaying their ability to complement the DNA transfer defect of the conjugative F-like plasmid R1-16 lacking a functional P19 protein, the specialized lytic transglycosylase of this type IV secretion system. Heterologous complementation was accomplished using IpgF from the plasmid-encoded type III secretion system of and TrbN from the type IV secretion system of the conjugative plasmid RP4. In contrast, neither VirB1 proteins (, ) nor IagB () could functionally replace P19. , IpgF, IagB, both VirB1 proteins, HP0523 () and P19 displayed peptidoglycanase activity in zymogram analyses. Using an established test system and a newly developed assay it was shown that IpgF degraded peptidoglycan in solution. IpgF was active only after removal of the chaperonin GroEL, which co-purified with IpgF and inhibited its enzymic activity. A mutant IpgF protein in which the predicted catalytic amino acid, Glu42, was replaced by Gln, was completely inactive. IpgF-catalysed peptidoglycan degradation was optimal at pH 6 and was inhibited by the lytic transglycosylase inhibitors hexa--acetylchitohexaose and bulgecin A.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.28141-0
2005-11-01
2019-10-21
Loading full text...

Full text loading...

/deliver/fulltext/micro/151/11/3455.html?itemId=/content/journal/micro/10.1099/mic.0.28141-0&mimeType=html&fmt=ahah

References

  1. Allaoui, A., Ménard, R., Sansonetti, P. J. & Parsot, C. ( 1993; ). Characterization of the Shigella flexneri ipgD and ipgF genes, which are located in the proximal part of the mxi locus. Infect Immun 61, 1707–1714.
    [Google Scholar]
  2. Ausubel, F. M., Brent, R., Kingston, R. E., Moore, D. D., Smith, J. A., Seidman, J. G. & Struhl, K. ( 1987; ). Current Protocols in Molecular Biology. New York: Wiley.
  3. Baneyx, F. & Georgiou, G. ( 1990; ). In vivo degradation of secreted fusion proteins by the Escherichia coli outer membrane protease OmpT. J Bacteriol 172, 491–494.
    [Google Scholar]
  4. Baron, C., Llosa, M., Zhou, S. & Zambryski, P. C. ( 1997; ). VirB1, a component of the T-complex transfer machinery of Agrobacterium tumefaciens, is processed to a C-terminal secreted product, VirB1*. J Bacteriol 179, 1203–1210.
    [Google Scholar]
  5. Bayer, M., Eferl, R., Zellnig, G., Teferle, K., Dijkstra, A. J., Koraimann, G. & Högenauer, G. ( 1995; ). Gene 19 of plasmid R1 is required for both efficient conjugative DNA transfer and bacteriophage R17 infection. J Bacteriol 177, 4279–4288.
    [Google Scholar]
  6. Bayer, M., Bischof, K., Noiges, R. & Koraimann, G. ( 2000; ). Subcellular localization and processing of the lytic transglycosylase of the conjugative plasmid R1. FEBS Lett 466, 389–393.[CrossRef]
    [Google Scholar]
  7. Bayer, M., Iberer, R., Bischof, K., Rassi, E., Stabentheiner, E., Zellnig, G. & Koraimann, G. ( 2001; ). Functional and mutational analysis of P19, a DNA transfer protein with muramidase activity. J Bacteriol 183, 3176–3183.[CrossRef]
    [Google Scholar]
  8. Bernadsky, G., Beveridge, T. J. & Clarke, A. J. ( 1994; ). Analysis of the sodium dodecyl sulfate-stable peptidoglycan autolysins of select Gram-negative pathogens by using renaturing polyacrylamide gel electrophoresis. J Bacteriol 176, 5225–5232.
    [Google Scholar]
  9. Buchrieser, C., Glaser, P., Rusniok, C., Nedjari, H., D'Hauteville, H., Kunst, F., Sansonetti, P. & Parsot, C. ( 2000; ). The virulence plasmid pWR100 and the repertoire of proteins secreted by the type III secretion apparatus of Shigella flexneri. Mol Microbiol 38, 760–771.[CrossRef]
    [Google Scholar]
  10. Cascales, E. & Christie, P. J. ( 2003; ). The versatile bacterial type IV secretion systems. Nat Rev Microbiol 1, 137–149.[CrossRef]
    [Google Scholar]
  11. Demchick, P. & Koch, A. L. ( 1996; ). The permeability of the wall fabric of Escherichia coli and Bacillus subtilis. J Bacteriol 178, 768–773.
    [Google Scholar]
  12. Deng, W., Puente, J. L., Gruenheid, S. & 12 other authors ( 2004; ). Dissecting virulence: systematic and functional analyses of a pathogenicity island. Proc Natl Acad Sci U S A 101, 3597–3602.[CrossRef]
    [Google Scholar]
  13. Dijkstra, A. J. & Keck, W. ( 1996; ). Peptidoglycan as a barrier to transenvelope transport. J Bacteriol 178, 5555–5562.
    [Google Scholar]
  14. Dokter, W. H., Dijkstra, A. J., Koopmans, S. B., Stulp, B. K., Keck, W., Halie, M. R. & Vellenga, E. ( 1994; ). G(Anh)MTetra, a natural bacterial cell wall breakdown product, induces interleukin-1 beta and interleukin-6 expression in human monocytes. A study of the molecular mechanisms involved in inflammatory cytokine expression. J Biol Chem 269, 4201–4206.
    [Google Scholar]
  15. Dziarski, R. ( 2003; ). Recognition of bacterial peptidoglycan by the innate immune system. Cell Mol Life Sci 60, 1793–1804.[CrossRef]
    [Google Scholar]
  16. Engel, H., Kazemier, B. & Keck, W. ( 1991; ). Murein-metabolizing enzymes from Escherichia coli: sequence analysis and controlled overexpression of the slt gene, which encodes the soluble lytic transglycosylase. J Bacteriol 173, 6773–6782.
    [Google Scholar]
  17. Fischer, W., Puls, J., Buhrdorf, R., Gebert, B., Odenbreit, S. & Haas, R. ( 2001; ). Systematic mutagenesis of the Helicobacter pylori cag pathogenicity island: essential genes for CagA translocation in host cells and induction of interleukin-8. Mol Microbiol 42, 1337–1348.
    [Google Scholar]
  18. Ghosh, P. ( 2004; ). Process of protein transport by the type III secretion system. Microbiol Mol Biol Rev 68, 771–795.[CrossRef]
    [Google Scholar]
  19. Girardin, S. E. & Philpott, D. J. ( 2004; ). The role of peptidoglycan recognition in innate immunity. Eur J Immunol 34, 1777–1782.[CrossRef]
    [Google Scholar]
  20. Girardin, S. E., Boneca, I. G., Carneiro, L. A. & 12 other authors ( 2003; ). Nod1 detects a unique muropeptide from Gram-negative bacterial peptidoglycan. Science 300, 1584–1587.[CrossRef]
    [Google Scholar]
  21. Höltje, J. V. & Heidrich, C. ( 2001; ). Enzymology of elongation and constriction of the murein sacculus of Escherichia coli. Biochimie 83, 103–108.[CrossRef]
    [Google Scholar]
  22. Höltje, J. V., Mirelman, D., Sharon, N. & Schwarz, U. ( 1975; ). Novel type of murein transglycosylase in Escherichia coli. J Bacteriol 124, 1067–1076.
    [Google Scholar]
  23. Höppner, C., Liu, Z., Domke, N., Binns, A. N. & Baron, C. ( 2004; ). VirB1 orthologs from Brucella suis and pKM101 complement defects of the lytic transglycosylase required for efficient type IV secretion from Agrobacterium tumefaciens. J Bacteriol 186, 1415–1422.[CrossRef]
    [Google Scholar]
  24. Höppner, C., Carle, A., Sivanesan, D., Hoeppner, S. & Baron, C. ( 2005; ). The putative lytic transglycosylase VirB1 from Brucella suis interacts with the type IV secretion system core components VirB8, VirB9 and VirB11. Microbiology 151, 3469–3482.[CrossRef]
    [Google Scholar]
  25. Jin, Q., Yuan, Z., Xu, J. & 30 other authors ( 2002; ). Genome sequence of Shigella flexneri 2a: insights into pathogenicity through comparison with genomes of Escherichia coli K12 and O157. Nucleic Acids Res 30, 4432–4441.[CrossRef]
    [Google Scholar]
  26. Keresztessy, Z., Hughes, J., Kiss, L. & Hughes, M. A. ( 1996; ). Co-purification from Escherichia coli of a plant beta-glucosidase-glutathione S-transferase fusion protein and the bacterial chaperonin GroEL. Biochem J 314, 41–47.
    [Google Scholar]
  27. Koraimann, G. ( 2003; ). Lytic transglycosylases in macromolecular transport systems of Gram-negative bacteria. Cell Mol Life Sci 60, 2371–2388.[CrossRef]
    [Google Scholar]
  28. Koraimann, G., Schroller, C., Graus, H., Angerer, D., Teferle, K. & Högenauer, G. ( 1993; ). Expression of gene 19 of the conjugative plasmid R1 is controlled by RNase III. Mol Microbiol 9, 717–727.[CrossRef]
    [Google Scholar]
  29. Korsak, D., Liebscher, S. & Vollmer, W. ( 2005; ). Susceptibility to antibiotics and β-lactamase induction in murein hydrolase mutants of Escherichia coli. Antimicrob Agents Chemother 49, 1404–1409.[CrossRef]
    [Google Scholar]
  30. Leung, A. K., Duewel, H. S., Honek, J. F. & Berghuis, A. M. ( 2001; ). Crystal structure of the lytic transglycosylase from bacteriophage lambda in complex with hexa-N-acetylchitohexaose. Biochemistry 40, 5665–5673.[CrossRef]
    [Google Scholar]
  31. Li, S. Y., Höltje, J. V. & Young, K. D. ( 2004; ). Comparison of high-performance liquid chromatography and fluorophore-assisted carbohydrate electrophoresis methods for analyzing peptidoglycan composition of Escherichia coli. Anal Biochem 326, 1–12.[CrossRef]
    [Google Scholar]
  32. Mattingly, J. R., Jr, Iriarte, A. & Martinez-Carrion, M. ( 1995; ). Homologous proteins with different affinities for GroEL. The refolding of the aspartate aminotransferase isozymes at varying temperatures. J Biol Chem 270, 1138–1148.[CrossRef]
    [Google Scholar]
  33. Minton, N. P. ( 1984; ). Improved plasmid vectors for the isolation of translational lac gene fusions. Gene 31, 269–273.[CrossRef]
    [Google Scholar]
  34. Miras, I., Hermant, D., Arricau, N. & Popoff, M. Y. ( 1995; ). Nucleotide sequence of iagA and iagB genes involved in invasion of HeLa cells by Salmonella enterica subsp. enterica ser. Typhi. Res Microbiol 146, 17–20.[CrossRef]
    [Google Scholar]
  35. Mushegian, A. R., Fullner, K. J., Koonin, E. V. & Nester, E. W. ( 1996; ). A family of lysozyme-like virulence factors in bacterial pathogens of plants and animals. Proc Natl Acad Sci U S A 93, 7321–7326.[CrossRef]
    [Google Scholar]
  36. O'Callaghan, D., Cazevieille, C., Allardet-Servent, A., Boschiroli, M. L., Bourg, G., Foulongne, V., Frutos, P., Kulakov, Y. & Ramuz, M. ( 1999; ). A homologue of the Agrobacterium tumefaciens VirB and Bordetella pertussis Ptl type IV secretion systems is essential for intracellular survival of Brucella suis. Mol Microbiol 33, 1210–1220.
    [Google Scholar]
  37. Pansegrau, W., Lanka, E., Barth, P. T. & 7 other authors ( 1994; ). Complete nucleotide sequence of Birmingham IncPα plasmids. Compilation and comparative analysis. J Mol Biol 239, 623–663.[CrossRef]
    [Google Scholar]
  38. Pink, D., Moeller, J., Quinn, B., Jericho, M. & Beveridge, T. ( 2000; ). On the architecture of the Gram-negative bacterial murein sacculus. J Bacteriol 182, 5925–5930.[CrossRef]
    [Google Scholar]
  39. Reid, C. W., Blackburn, N. T. & Clarke, A. J. ( 2004a; ). The effect of NAG-thiazoline on morphology and surface hydrophobicity of Escherichia coli. FEMS Microbiol Lett 234, 343–348.
    [Google Scholar]
  40. Reid, C. W., Blackburn, N. T., Legaree, B. A., Auzanneau, F. I. & Clarke, A. J. ( 2004b; ). Inhibition of membrane-bound lytic transglycosylase B by NAG-thiazoline. FEBS Lett 574, 73–79.[CrossRef]
    [Google Scholar]
  41. Rosenthal, R. S. & Dziarski, R. ( 1994; ). Isolation of peptidoglycan and soluble peptidoglycan fragments. Methods Enzymol 235, 253–285.
    [Google Scholar]
  42. Royet, J. & Reichhart, J. M. ( 2003; ). Detection of peptidoglycans by NOD proteins. Trends Cell Biol 13, 610–614.[CrossRef]
    [Google Scholar]
  43. Sambrook, J., Fritsch, E. F. & Maniatis, T. ( 1989; ). Molecular Cloning: a Laboratory Manual. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  44. Song, H., Inaka, K., Maenaka, K. & Matsushima, M. ( 1994; ). Structural changes of active site cleft and different saccharide binding modes in human lysozyme co-crystallized with hexa-N-acetyl-chitohexaose at pH 4·0. J Mol Biol 244, 522–540.[CrossRef]
    [Google Scholar]
  45. Sukhan, A., Kubori, T., Wilson, J. & Galan, J. E. ( 2001; ). Genetic analysis of assembly of the Salmonella enterica serovar Typhimurium type III secretion-associated needle complex. J Bacteriol 183, 1159–1167.[CrossRef]
    [Google Scholar]
  46. Tampakaki, A. P., Fadouloglou, V. E., Gazi, A. D., Panopoulos, N. J. & Kokkinidis, M. ( 2004; ). Conserved features of type III secretion. Cell Microbiol 6, 805–816.[CrossRef]
    [Google Scholar]
  47. Templin, M. F., Edwards, D. H. & Holtje, J. V. ( 1992; ). A murein hydrolase is the specific target of bulgecin in Escherichia coli. J Biol Chem 267, 20039–20043.
    [Google Scholar]
  48. Thompson, D. V., Melchers, L. S., Idler, K. B., Schilperoort, R. A. & Hooykaas, P. J. ( 1988; ). Analysis of the complete nucleotide sequence of the Agrobacterium tumefaciens virB operon. Nucleic Acids Res 16, 4621–4636.[CrossRef]
    [Google Scholar]
  49. Thunnissen, A. M., Rozeboom, H. J., Kalk, K. H. & Dijkstra, B. W. ( 1995; ). Structure of the 70-kDa soluble lytic transglycosylase complexed with bulgecin A. Implications for the enzymatic mechanism. Biochemistry 34, 12729–12737.[CrossRef]
    [Google Scholar]
  50. Tomb, J. F., White, O., Kerlavage, A. R. & 22 other authors ( 1997; ). The complete genome sequence of the gastric pathogen Helicobacter pylori. Nature 388, 539–547.[CrossRef]
    [Google Scholar]
  51. van Asselt, E. J., Kalk, K. H. & Dijkstra, B. W. ( 2000; ). Crystallographic studies of the interactions of Escherichia coli lytic transglycosylase Slt35 with peptidoglycan. Biochemistry 39, 1924–1934.[CrossRef]
    [Google Scholar]
  52. Vázquez-Laslop, N., Lee, H., Hu, R. & Neyfakh, A. A. ( 2001; ). Molecular sieve mechanism of selective release of cytoplasmic proteins by osmotically shocked Escherichia coli. J Bacteriol 183, 2399–2404.[CrossRef]
    [Google Scholar]
  53. Viala, J., Chaput, C., Boneca, I. G. & 13 other authors ( 2004; ). Nod1 responds to peptidoglycan delivered by the Helicobacter pylori cag pathogenicity island. Nat Immunol 5, 1166–1174.[CrossRef]
    [Google Scholar]
  54. Wang, Z., Feng, H., Landry, S. J., Maxwell, J. & Gierasch, L. M. ( 1999; ). Basis of substrate binding by the chaperonin GroEL. Biochemistry 38, 12537–12546.[CrossRef]
    [Google Scholar]
  55. Ward, D. V., Draper, O., Zupan, J. R. & Zambryski, P. C. ( 2002; ). Peptide linkage mapping of the Agrobacterium tumefaciens vir-encoded type IV secretion system reveals protein subassemblies. Proc Natl Acad Sci U S A 99, 11493–11500.[CrossRef]
    [Google Scholar]
  56. Yao, X., Jericho, M., Pink, D. & Beveridge, T. ( 1999; ). Thickness and elasticity of Gram-negative murein sacculi measured by atomic force microscopy. J Bacteriol 181, 6865–6875.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.28141-0
Loading
/content/journal/micro/10.1099/mic.0.28141-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error