1887

Abstract

AD9 was isolated as an aniline-degrading bacterium from the soil surrounding a textile dyeing plant. The gene cluster involved in aniline degradation was cloned from the total DNA of strain AD9 into JM109. After shotgun cloning, two recombinant strains showing aniline oxidation activity or catechol -cleavage activity were obtained by simple plate assays. These strains contained 9·3 kb and 15·4 kb DNA fragments, respectively. Sequence analysis of the total 24·7 kb region revealed that this region contains a gene cluster (consisting of at least 17 genes, named ) responsible for the complete metabolism of aniline to TCA-cycle intermediates. In the gene cluster, the first five genes () and the subsequent gene () were predicted to encode a multi-component aniline dioxygenase and a LysR-type regulator, respectively, while the others () were expected to encode -cleavage pathway enzymes for catechol degradation. In addition, it was found that the gene cluster is surrounded by two IS sequences, indicating that it has a class I transposon-like structure. PFGE and Southern hybridization analyses confirmed that the gene cluster is encoded on the chromosome of strain AD9 in a single copy. These results suggest that, in strain AD9, aniline is degraded via catechol through a -cleavage pathway by the chromosome-encoded gene cluster. The gene cluster showed significant similarity in nucleotide sequence and genetic organization to the plasmid-encoded aniline degradation gene cluster of UCC22.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.28137-0
2005-10-01
2019-10-18
Loading full text...

Full text loading...

/deliver/fulltext/micro/151/10/3435.html?itemId=/content/journal/micro/10.1099/mic.0.28137-0&mimeType=html&fmt=ahah

References

  1. Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. ( 1990; ). Basic local alignment search tool. J Mol Biol 215, 403–410.[CrossRef]
    [Google Scholar]
  2. Anson, J. G. & Mackinnon, G. ( 1984; ). Novel Pseudomonas plasmid involved in aniline degradation. Appl Environ Microbiol 48, 868–869.
    [Google Scholar]
  3. Aoki, K., Shinke, R. & Nishira, H. ( 1983; ). Metabolism of aniline by Rhodococcus erythropolis AN-13. Agric Biol Chem 47, 1611–1616.[CrossRef]
    [Google Scholar]
  4. Aoki, K., Ohtsuka, K., Shinke, R. & Nishira, H. ( 1984; ). Rapid biodegradation of aniline by Frateuria species ANA-18. Agric Biol Chem 48, 856–872.
    [Google Scholar]
  5. Aoki, K., Kodama, N., Murakami, S. & Shinke, R. ( 1997; ). A high level of accumulation of 2-hydroxymuconic 6-semialdehyde from aniline by the transpositional mutant Y-2 of Pseudomonas species AW-2. Microbiol Res 152, 129–135.[CrossRef]
    [Google Scholar]
  6. Arai, H., Ohishi, T., Chang, M. Y. & Kudo, T. ( 2000; ). Arrangement and regulation of the genes for meta-cleavage enzymes required for degradation of phenol in Comamonas testosteroni TA441. Microbiology 146, 1707–1715.
    [Google Scholar]
  7. Bachofer, R., Lingens, F. & Schafer, W. ( 1975; ). Conversion of aniline into pyrocatechol by a Nocardia sp. incorporation of oxygen-18. FEBS Lett 50, 288–290.[CrossRef]
    [Google Scholar]
  8. Bathe, S. ( 2004; ). Conjugal transfer of plasmid pNB2 to activated sludge bacteria leads to 3-chloroaniline degradation in enrichment cultures. Lett Appl Microbiol 38, 527–531.[CrossRef]
    [Google Scholar]
  9. Bhunia, F., Saha, N. C. & Kaviraj, A. ( 2003; ). Effects of aniline – an aromatic amine – to some freshwater organisms. Ecotoxicology 12, 397–404.[CrossRef]
    [Google Scholar]
  10. Bollag, J. M., Blattmann, P. & Laanio, T. ( 1978; ). Adsorption and transformation of four substituted anilines in soil. J Agric Food Chem 26, 1302–1306.[CrossRef]
    [Google Scholar]
  11. Boon, N. J., Goris, P. D. V., Verstraete, W. & Top, E. M. ( 2001; ). Genetic diversity among 3-chloroaniline- and aniline-degrading strains of the Comamonadaceae. Appl Environ Microbiol 67, 1107–1115.[CrossRef]
    [Google Scholar]
  12. Brunsbach, F. R. & Reineke, W. ( 1993; ). Degradation of chloroanilines in soil slurry by specialized organisms. Appl Microbiol Biotechnol 40, 2–3.
    [Google Scholar]
  13. Chung, K. T., Kirkovsky, L., Kirkovsky, A. & Purcell, W. P. ( 1997; ). Review of mutagenicity of monocyclic aromatic amines: quantitative structure-activity relationships. Mutat Res 387, 1–16.[CrossRef]
    [Google Scholar]
  14. Crabtree, H. C., Hart, D., Thomas, M. C., Witham, B. H., McKenzie, I. G. & Smith, C. P. ( 1991; ). Carcinogenic ranking of aromatic amines and nitro compounds. Mutat Res 264, 155–162.[CrossRef]
    [Google Scholar]
  15. De Ley, J., Cattoir, H. & Reynaerts, A. ( 1970; ). The quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem 12, 133–142.[CrossRef]
    [Google Scholar]
  16. Fuchs, K., Schreiner, A. & Lingens, F. ( 1991; ). Degradation of 2-methylaniline and chlorinated isomers of 2-methylaniline by Rhodococcus rhodochrous strain CTM. J Gen Microbiol 137, 2033–2039.[CrossRef]
    [Google Scholar]
  17. Fujii, T., Takeo, M. & Maeda, Y. ( 1997; ). Plasmid-encoded genes specifying aniline oxidation from Acinetobacter sp. strain YAA. Microbiology 143, 93–99.[CrossRef]
    [Google Scholar]
  18. Fukumori, F. & Saint, C. P. ( 1997; ). Nucleotide sequences and regulational analysis involved in conversion of aniline to catechol in Pseudomonas putida UCC22(pTDN1). J Bacteriol 179, 399–408.
    [Google Scholar]
  19. Fukumori, F. & Saint, C. P. ( 2001; ). Complete nucleotide sequence of the catechol metabolic region of plasmid pTDN1. J Gen Appl Microbiol 47, 329–333.[CrossRef]
    [Google Scholar]
  20. Han, J., Sun, L., Dong, X., Zheng, Q., Sun, X., Yang, H., Wang, Y. & Song, W. ( 2005; ). Characterization of a novel plant growth-promoting bacteria strain Delftia tsuruhatensis HR4 both as a diazotroph and a potential biocontrol agent against various plant pathogens. Syst Appl Microbiol 28, 66–76.[CrossRef]
    [Google Scholar]
  21. Hoffmann, D., Kleinsteuber, S., Muller, R. H. & Babel, W. ( 2003; ). A transposon encoding the complete 2,4-dichlorophenoxyacetic acid degradation pathway in the alkalitolerant strain Delftia acidovorans P4a. Microbiology 149, 2545–2556.[CrossRef]
    [Google Scholar]
  22. Huss, V. A. R., Fest, H. & Schleifer, K. H. ( 1983; ). Studies on the spectrophotometric determination of DNA hybridization from renaturation rates. Syst Appl Microbiol 4, 184–192.[CrossRef]
    [Google Scholar]
  23. Kahng, H. Y., Kukor, J. J. & Oh, K. H. ( 2000; ). Characterization ofstrain HY99, a novel microorganism capable of aerobic and anaerobic degradation of aniline. FEMS Microbiol Lett 190, 215–221.[CrossRef]
    [Google Scholar]
  24. Kearney, P. C. & Kaufman, D. D. ( 1975; ). Herbicides: Chemistry, Degradation, and Mode of Action, 2nd edn. New York: Marcel Dekker.
  25. Kieser, H. M., Kieser, T. & Hopwood, D. A. ( 1992; ). A combined genetic and physical map of the Streptomyces coelicolor A3(2) chromosome. J Bacteriol 174, 5496–5507.
    [Google Scholar]
  26. Kim, S. I., Leem, S.-H., Choi, J.-S., Chung, Y. H., Kim, S., Park, Y.-M., Park, Y. K., Lee, Y. N. & Ha, K.-S. ( 1997; ). Cloning and characterization of two catA genes in Acinetobacter lwoffii K24. J Bacteriol 179, 5226–5231.
    [Google Scholar]
  27. Kim, H. J., Kim, S. E., Kim, J. G. & 7 other authors ( 2003; ). Cloning of genes involved in aniline degradation from Delftia acidovorans. Hanguk Misaengmul Saengmyong Konghakhoe Chi 31, 25–31.
    [Google Scholar]
  28. Latorre, J., Reineke, W. & Knackmuss, H. J. ( 1984; ). Microbial metabolism of chloroanilines enhanced evolution by natural genetic exchange. Arch Microbiol 140, 159–165.[CrossRef]
    [Google Scholar]
  29. Liu, Z., Yang, H., Huang, Z., Zhou, P. & Liu, S. J. ( 2002; ). Degradation of aniline by newly isolated, extremely aniline-tolerant Delftia sp. AN3. Appl Microbiol Biotechnol 58, 679–682.[CrossRef]
    [Google Scholar]
  30. Loidl, M., Hinteregger, C., Ditzelmueller, G., Ferschl, A. & Streichsbier, F. ( 1990; ). Degradation of aniline and monochlorinated anilines by soil-borne Pseudomonas acidovorans strains. Arch Microbiol 155, 56–61.[CrossRef]
    [Google Scholar]
  31. Lyons, C. D., Katz, S. & Bartha, R. ( 1984; ). Mechanisms and pathways of aniline elimination from aquatic environment. Appl Environ Microbiol 48, 491–496.
    [Google Scholar]
  32. Lyons, C. D., Katz, S. & Bartha, R. ( 1985; ). Persistence and mutagenic potential of herbicide-derived aniline residues in pond water. Bull Environ Contam Toxicol 35, 696–703.[CrossRef]
    [Google Scholar]
  33. Marmur, J. ( 1961; ). A procedure for the isolation of DNA from microorganisms. J Mol Biol 3, 208–218.[CrossRef]
    [Google Scholar]
  34. Marmur, J. & Doty, P. ( 1962; ). Determination of the base composition of deoxyribonucleic acid from thermal denaturation temperature. J Mol Biol 5, 109–118.[CrossRef]
    [Google Scholar]
  35. McClure, N. C. & Venables, W. A. ( 1987; ). pTND1, a catabolic plasmid involved in aromatic amine catabolism in Pseudomonas putida mt-2. J Gen Microbiol 133, 2073–2077.
    [Google Scholar]
  36. Meyer, U. ( 1981; ). Biodegradation of synthetic organic colorants. In Microbial Degradation of Xenobiotics and Recalcitrant Compounds, pp. 371–385. Edited by T. Leisinger and others. London: Academic Press.
  37. Murakami, S., Hayashi, T., Maeda, T., Takenaka, S. & Aoki, K. ( 2003; ). Cloning and functional analysis of aniline dioxygenase gene cluster, from Frateuria species ANA-18, that metabolizes aniline via an ortho-cleavage pathway of catechol. Biosci Biotechnol Biochem 67, 2351–2358.[CrossRef]
    [Google Scholar]
  38. Nakatsu, C., Ng, J., Singh, R., Straus, N. & Wyndham, C. ( 1991; ). Chlorobenzoate catabolic transposon Tn5271 is a composite class I element with flanking class II insertion sequences. Proc Natl Acad Sci U S A 88, 8312–8316.[CrossRef]
    [Google Scholar]
  39. Nakazawa, T. & Yokota, T. ( 1973; ). Benzoate metabolism in Pseudomonas putida (arvilla) mt-2, demonstration of two benzoate pathways. J Microbiol 115, 262–267.
    [Google Scholar]
  40. Rhodes, M. E. ( 1970; ). Aniline utilization by Alcaligenes faecalis: a taxonomic reappraisal. J Appl Bacteriol 33, 714–720.[CrossRef]
    [Google Scholar]
  41. Rochelle, P. A., Will, J. A. K., Fry, J. C., Jenkins, G. J. S., Parkes, R. J., Turley, C. M. & Weightman, A. J. ( 1995; ). Extraction and amplification of 16S rRNA genes from deep marine sediments and seawater to assess bacterial community diversity. In Nucleic Acids in the Environment, pp. 219–239. Edited by J. T. Trevors & J. D. van Elsas. New York: Springer.
  42. Saber, D. L. & Crawford, R. L. ( 1985; ). Isolation and characterization of Flavobacterium strains that degrade pentachlorophenol. Appl Environ Microbiol 50, 1512–1518.
    [Google Scholar]
  43. Sambrook, J. & Russell, D. W. ( 2001; ). Molecular Cloning: a Laboratory Manual, 3rd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  44. Shigematsu, T., Yumihara, K., Ueda, Y., Numaguchi, M., Morimura, S. & Kida, K. ( 2003; ). Delftia tsuruhatensis sp. nov., a terephthalate assimilating bacterium isolated from activated sludge. Int J Syst Bacteriol 53, 1479–1483.[CrossRef]
    [Google Scholar]
  45. Shintani, M., Nojiri, H., Yoshida, T., Habe, H. & Omori, T. ( 2003; ). Carbazole/dioxin-degrading car gene cluster is located on the chromosome of Pseudomonas stutzeri strain OM1 in a form different from the simple transposition of Tn4676. Biotechnol Lett 25, 1255–1261.[CrossRef]
    [Google Scholar]
  46. Snell, F. D. ( 1954; ). Colorimetric Methods of Analysis, 3rd edn, vol. IV, pp. 198–199. Amsterdam: Van Nostrand.
  47. Springael, D. & Top, E. M. ( 2004; ). Horizontal gene transfer and microbial adaptation to xenobiotics: new types of mobile genetic elements and lessons from ecological studies. Trends Microbiol 12, 53–58.[CrossRef]
    [Google Scholar]
  48. Takeo, M., Fujii, T. & Maeda, Y. ( 1998; ). Sequence analysis of the genes encoding a multicomponent dioxygenase involved in oxidation of aniline and o-toluidine in Acinetobacter sp. strain YAA. J Ferment Bioeng 85, 17–24.[CrossRef]
    [Google Scholar]
  49. Tan, H.-M. ( 1999; ). Bacterial catabolic transposons. Appl Microbiol Biotechnol 51, 1–12.[CrossRef]
    [Google Scholar]
  50. Travkin, V. M., Solyanikova, I. P., Rietjens, I. M., Vervoort, J., van Berkel, W. J. & Golovleva, L. A. ( 2003; ). Degradation of 3,4-dichloro- and 3,4-difluoroaniline by Pseudomonas fluorescens 26-K. J Environ Sci Health B 38, 121–132.[CrossRef]
    [Google Scholar]
  51. Tsuda, M., Tan, H. M., Nishi, A. & Furukawa, K. ( 1999; ). Mobile catabolic genes in bacteria. J Biosci Bioeng 87, 401–410.[CrossRef]
    [Google Scholar]
  52. Urata, M., Uchida, E., Nojiri, H., Omori, T., Obo, R., Miyaura, N. & Ouchiyama, N. ( 2004; ). Genes involved in aniline degradation by Delftia acidovorans strain 7N and its distribution in the natural environment. Biosci Biotechnol Biochem 68, 2457–2465.[CrossRef]
    [Google Scholar]
  53. Wen, A., Fegan, M., Hayward, C., Chakraborty, S. & Sly, L. I. ( 1999; ). Phylogenetic relationships among members of the Comamonadaceae, and description of Delftia acidovorans (den Dooren de Jong 1926 and Tamaoka et al. 1987) gen. nov., comb. nov. Int J Syst Bacteriol 49, 567–576.[CrossRef]
    [Google Scholar]
  54. Wilson, K. ( 1987; ). Preparation of genomic DNA from bacteria. In Current Protocols in Molecular Biology, pp. 2.10–2.12. Edited by F. M. Ausubul and others. New York: Wiley.
  55. Winstanley, C., Morgan, J. A., Pickup, R. W., Jones, J. G. & Saunders, J. R. ( 1989; ). Differential regulation of lambda pL and pR promoters by a cl repressor in a broad-host-range thermoregulated plasmid marker system. Appl Environ Microbiol 55, 771–777.
    [Google Scholar]
  56. Wyndham, R. C., Cashore, A. E., Nakatsu, C. H. & Peel, M. C. ( 1994; ). Catabolic transposons. Biodegradation 5, 323–342.[CrossRef]
    [Google Scholar]
  57. Xu, Y., Chen, M., Zhang, W. & Lin, M. ( 2003; ). Genetic organization of genes encoding phenol hydroxylase, benzoate 1,2-dioxygenase alpha subunit and its regulatory proteins in Acinetobacter calcoaceticus PHEA-2. Curr Microbiol 46, 235–240.[CrossRef]
    [Google Scholar]
  58. Zeyer, J., Wasserfallen, A. & Timmis, K. N. ( 1985; ). Microbial mineralization of ring-substituted anilines through an ortho-cleavage pathway. Appl Environ Microbiol 50, 447–453.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.28137-0
Loading
/content/journal/micro/10.1099/mic.0.28137-0
Loading

Data & Media loading...

Supplements

vol. , part 10, pp. 3435 - 3446

Table summarizing the morphological, physiological and biochemical characteristics of strain AD9, and . [PDF](1 kb)



PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error