1887

Abstract

is a genus of Gram-negative bacteria from the family . Members of have a complex life cycle during which the bacterium has a pathogenic interaction with insect larvae whilst also maintaining a mutualistic relationship with nematodes from the family Heterorhabditidae. During growth in the insect, bacteria produce a broad-spectrum antibiotic identified as 3,5-dihydroxy-4-isopropylstilbene (ST). The biochemical pathway responsible for the production of this antibiotic has not been characterized. In this report, a mutant strain of subsp. TT01, BMM901, has been isolated, by transposon mutagenesis, that is unable to produce the ST antibiotic. Using studies, feeding experiments and biochemical analyses, it is shown that the gene mutated in this strain, , encodes phenylalanine ammonia-lyase (PAL). PAL catalyses the non-oxidative deamination of -phenylalanine to -cinnamic acid and the enzyme is ubiquitous in plants, where it is involved in the production of phenylpropanoids such as lignin and phytoalexins. However, this is the first report of PAL activity in a member of the .

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.28136-0
2005-08-01
2020-04-03
Loading full text...

Full text loading...

/deliver/fulltext/micro/151/8/mic1512543.html?itemId=/content/journal/micro/10.1099/mic.0.28136-0&mimeType=html&fmt=ahah

References

  1. Akhurst R. J. 1982; Antibiotic activity of Xenorhabdus spp., bacteria symbiotically associated with insect pathogenic nematodes of the families Heterorhabditidae and Steinernematidae. J Gen Microbiol128:3061–3065
    [Google Scholar]
  2. Alunni S., Cipiciani A., Fioroni G., Ottavi L. 2003; Mechanisms of inhibition of phenylalanine ammonia-lyase by phenol inhibitors and phenol/glycine synergistic inhibitors. Arch Biochem Biophys412:170–175[CrossRef]
    [Google Scholar]
  3. Calabrese J. C., Jordan D. B., Boodhoo A., Sariaslani S., Vannelli T. 2004; Crystal structure of phenylalanine ammonia lyase: multiple helix dipoles implicated in catalysis. Biochemistry43:11403–11416[CrossRef]
    [Google Scholar]
  4. Ciche T. A., Bintrim S. B., Horswill A. R., Ensign J. C. 2001; A phosphopantetheinyl transferase homolog is essential for Photorhabdus luminescens to support growth and reproduction of the entomopathogenic nematode. Heterorhabditis bacteriophora. J Bacteriol183:3117–3126[CrossRef]
    [Google Scholar]
  5. Cochrane F. C., Davin L. B., Lewis N. G. 2004; The Arabidopsis phenylalanine ammonia lyase gene family: kinetic characterization of the four PAL isoforms. Phytochemistry65:1557–1564[CrossRef]
    [Google Scholar]
  6. Derzelle S., Duchaud E., Kunst F., Danchin A., Bertin P. 2002; Identification, characterization, and regulation of a cluster of genes involved in carbapenem biosynthesis in. Photorhabdus luminescens. Appl Environ Microbiol68:3780–3789[CrossRef]
    [Google Scholar]
  7. Dixon R. A. 2001; Natural products and plant disease resistance. Nature411:843–847[CrossRef]
    [Google Scholar]
  8. Duchaud E., Rusniok C., Frangeul L. 23 other authors 2003; The genome sequence of the entomopathogenic bacterium Photorhabdus luminescens. Nat Biotechnol21:1307–1313[CrossRef]
    [Google Scholar]
  9. Eisenthal R., Cornish-Bowden A. 1974; The direct linear plot. A new graphical procedure for estimating enzyme kinetic parameters. Biochem J139:715–720
    [Google Scholar]
  10. ffrench-Constant R., Waterfield N., Daborn P. 7 other authors 2003; Photorhabdus: towards a functional genomic analysis of a symbiont and pathogen. FEMS Microbiol Rev26:433–456[CrossRef]
    [Google Scholar]
  11. Forst S., Clarke D. J. 2002; Nematode-bacterium symbiosis. In Entomopathogenic Nematology pp57–77 Edited by Gaugler R.. Wallingford, UK: CABI Publishing;
    [Google Scholar]
  12. Han R., Ehlers R.-U. 1999; Trans-specific nematicidal activity of Photorhabdus luminescens. Nematology1:687–693[CrossRef]
    [Google Scholar]
  13. Herrero M., de Lorenzo V., Timmis K. N. 1990; Transposon vectors containing non-antibiotic resistance selection markers for cloning and stable chromosomal insertion of foreign genes in gram-negative bacteria. J Bacteriol172:6557–6567
    [Google Scholar]
  14. Hopwood D. A. 1997; Genetic contributions to understanding polyketide synthases. Chem Rev97:2465–2498[CrossRef]
    [Google Scholar]
  15. Hu K., Webster J. M. 2000; Antibiotic production in relation to bacterial growth and nematode development in PhotorhabdusHeterorhabditis infected Galleria mellonella larvae. FEMS Microbiol Lett189:219–223
    [Google Scholar]
  16. Hu K., Li J., Webster J. M. 1997; Quantitative analysis of a bacteria-derived antibiotic in nematode-infected insects using HPLC-UV and TLC-UV methods. J Chromatogr B Biomed Sci Appl703:177–183[CrossRef]
    [Google Scholar]
  17. Hu K., Li J., Webster J. M. 1999; Nematicidal metabolites produced by Photorhabdus luminescens (Enterobacteriaceae), bacterial symbiont of entomopathogenic nematodes. Nematology1:457–469[CrossRef]
    [Google Scholar]
  18. Jeandet P., Douillet-Breuil A. C., Bessis R., Debord S., Sbaghi M., Adrian M. 2002; Phytoalexins from the Vitaceae: biosynthesis, phytoalexin gene expression in transgenic plants, antifungal activity, and metabolism. J Agric Food Chem50:2731–2741[CrossRef]
    [Google Scholar]
  19. Joyce S. A., Clarke D. J. 2003; A hexA homologue from Photorhabdus regulates pathogenicity, symbiosis and phenotypic variation. Mol Microbiol47:1445–1457[CrossRef]
    [Google Scholar]
  20. Kalaitzis J. A., Izumikawa M., Xiang L., Hertweck C., Moore B. S. 2003; Mutasynthesis of enterocin and wailupemycin analogues. J Am Chem Soc125:9290–9291[CrossRef]
    [Google Scholar]
  21. Kyndt J. A., Meyer T. E., Cusanovich M. A., Van Beeumen J. J. 2002; Characterization of a bacterial tyrosine ammonia lyase, a biosynthetic enzyme for the photoactive yellow protein. FEBS Lett512:240–244[CrossRef]
    [Google Scholar]
  22. Li J., Chen G., Wu H., Webster J. M. 1995; Identification of two pigments and a hydroxystilbene antibiotic from Photorhabdus luminescens. Appl Environ Microbiol61:4329–4333
    [Google Scholar]
  23. Moore B. S., Hertweck C., Hopke J. N. 9 other authors 2002; Plant-like biosynthetic pathways in bacteria: from benzoic acid to chalcone. J Nat Prod65:1956–1962[CrossRef]
    [Google Scholar]
  24. Pervaiz S. 2003; Resveratrol: from grapevines to mammalian biology. FASEB J17:1975–1985[CrossRef]
    [Google Scholar]
  25. Piel J., Hertweck C., Shipley P. R., Hunt D. M., Newman M. S., Moore B. S. 2000; Cloning, sequencing and analysis of the enterocin biosynthesis gene cluster from the marine isolate ‘Streptomyces maritimus’: evidence for the derailment of an aromatic polyketide synthase. Chem Biol7:943–955[CrossRef]
    [Google Scholar]
  26. Raiber S., Schroder G., Schroder J. 1995; Molecular and enzymatic characterization of two stilbene synthases from Eastern white pine (Pinus strobus). A single Arg/His difference determines the activity and the pH dependence of the enzymes. FEBS Lett361:299–302[CrossRef]
    [Google Scholar]
  27. Richardson W. H., Schmidt T. M., Nealson K. H. 1988; Identification of an anthraquinone pigment and a hydroxystilbene antibiotic from Xenorhabdus luminescens. Appl Environ Microbiol54:1602–1605
    [Google Scholar]
  28. Sambrook J., Fritsch E. F., Maniatis T. 1989; Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  29. Schanz S., Schroder G., Schroder J. 1992; Stilbene synthase from Scots pine (Pinus sylvestris. FEBS Lett313:71–74[CrossRef]
    [Google Scholar]
  30. Sharma S., Waterfield N., Bowen D., Rocheleau T., Holland L., James R., ffrench-Constant R. 2002; The lumicins: novel bacteriocins from Photorhabdus luminescens with similarity to the uropathogenic-specific protein (USP) from uropathogenic. Escherichia coli. FEMS Microbiol Lett214:241–249[CrossRef]
    [Google Scholar]
  31. Weisshaar B., Jenkins G. I. 1998; Phenylpropanoid biosynthesis and its regulation. Curr Opin Plant Biol1:251–257[CrossRef]
    [Google Scholar]
  32. Xiang L., Moore B. S. 2002; Inactivation, complementation, and heterologous expression of encP, a novel bacterial phenylalanine ammonia-lyase gene. J Biol Chem277:32505–32509[CrossRef]
    [Google Scholar]
  33. Xiang L., Moore B. S. 2003; Characterization of benzoyl coenzyme A biosynthesis genes in the enterocin-producing bacterium ‘Streptomyces maritimus’. J Bacteriol185:399–404[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.28136-0
Loading
/content/journal/micro/10.1099/mic.0.28136-0
Loading

Data & Media loading...

Most cited this month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error