1887

Abstract

A transposon, Tn, that carries a set of arsenic-resistance genes was isolated from a strain of the moderately thermophilic, sulfur-oxidizing, biomining bacterium . This strain originated from a commercial plant used for the bio-oxidation of gold-bearing arsenopyrite concentrates. Continuous selection for arsenic resistance over many years had made the bacterium resistant to high concentrations of arsenic. Sequence analysis indicated that Tn is 12 444 bp in length and has 40 bp terminal inverted repeat sequences and divergently transcribed resolvase and transposase genes that are related to the Tn-transposon subfamily. A series of genes consisting of , two tandem copies of and , two ORFs (7 and 8) and is situated between the resolvase and transposase genes. Although some commercial strains of contained the duplication, when transformed into , the duplication was unstable and was frequently lost during cultivation or if a plasmid containing Tn was conjugated into a recipient strain. Tn conferred resistance to arsenite and arsenate upon cells. Deletion of one copy of had no noticeable effect on resistance to arsenite or arsenate in . ORFs 7 and 8 had clear sequence similarity to an NADH oxidase and a CBS-domain-containing protein, respectively, but their deletion did not affect resistance to arsenite or arsenate in . Tn was actively transposed in , but no increase in transposition frequency in the presence of arsenic was detected. Northern hybridization and reporter gene studies indicated that although ArsR regulated the 10 kb operon containing the arsenic-resistance genes in response to arsenic, ArsR had no effect on the regulation of genes associated with transposition activity.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.28131-0
2005-09-01
2024-04-25
Loading full text...

Full text loading...

/deliver/fulltext/micro/151/9/mic1513027.html?itemId=/content/journal/micro/10.1099/mic.0.28131-0&mimeType=html&fmt=ahah

References

  1. Bateman A. 1997; The structure of a domain common to archaebacteria and the homocystinuria disease protein. Trends Biochem Sci 22:12–13
    [Google Scholar]
  2. Bennett M. S., Guan Z., Laurberg M., Su X.-D. 2001; Bacillus subtilis arsenate reductase is structurally and functionally similar to low molecular weight protein tyrosine phosphatases. Proc Natl Acad Sci U S A 98:13577–13582 [CrossRef]
    [Google Scholar]
  3. Butcher B. G., Rawlings D. E. 2002; The divergent chromosomal operon of Acidithiobacillus ferrooxidans is regulated by an atypical ArsR protein. Microbiology 148:3983–3992
    [Google Scholar]
  4. Butcher B. G., Deane S. M., Rawlings D. E. 2000; The chromosomal arsenic resistance genes of Thiobacillus ferrooxidans have an unusual arrangement and confer increased arsenic and antimony resistance to Escherichia coli . Appl Environ Microbiol 66:1826–1833 [CrossRef]
    [Google Scholar]
  5. Carlin A., Shi W., Dey S., Rosen B. P. 1995; The ars operon of Escherichia coli confers arsenical and antimonal resistance. J Bacteriol 177:981–986
    [Google Scholar]
  6. Casadaban M. J., Martinez-Arias A., Shapira S. K., Chou J. 1983; β -Galactosidase gene fusions for analysing gene expression in Escherichia coli and yeast. Methods Enzymol 100:293–308
    [Google Scholar]
  7. Chang A. C. Y., Cohen S. N. 1978; Construction and characterization of amplifiable multicopy DNA cloning vehicles derived from the p15A cryptic miniplasmid. J Bacteriol 134:1141–1156
    [Google Scholar]
  8. Chen C.-M., Misra T., Silver S., Rosen B. P. 1986; Nucleotide sequence of the structural genes for an anion pump; the plasmid encoded arsenical resistance operons. J Biol Chem 261:15030–15038
    [Google Scholar]
  9. de Groot P., Deane S. M., Rawlings D. E. 2003; A transposon-located arsenic resistance mechanism from a strain of Acidithiobacillus caldus isolated from commercial, arsenopyrite biooxidation tanks. Hydrometallurgy 71:115–123 [CrossRef]
    [Google Scholar]
  10. Dew D. W., Lawson E. N., Broadhurst J. L. 1997; The Biox® process for biooxidation of gold-bearing ores or concentrates. In Biomining: Theory, Microbes and Industrial Processes pp 45–80 Edited by Rawlings D. E. Berlin: Springer;
    [Google Scholar]
  11. Dey S., Dou D., Rosen B. P. 1994; ATP-dependent arsenite transport in everted membrane vesicles of Escherichia coli . J Biol Chem 269:25442–25446
    [Google Scholar]
  12. Goebel B. M., Stackebrandt E. 1994; Cultural and phylogenetic analysis of mixed microbial populations found in natural and commercial bioleaching environments. Appl Environ Microbiol 60:1614–1621
    [Google Scholar]
  13. Grinsted J., Schmitt R, de la Cruz F. 1990; The Tn 21 subgroup of bacterial transposable elements. Plasmid 24:163–189 [CrossRef]
    [Google Scholar]
  14. Hallberg K. B., Lindström E. B. 1994; Characterization of Thiobacillus caldus sp. nov., a moderately thermophilic acidophile. Microbiology 140:3451–3456 [CrossRef]
    [Google Scholar]
  15. Hõrak R., Kivisaar M. 1999; Regulation of the transposase of Tn 4652 by the transposon-encoded protein TnpC. J Bacteriol 181:6312–6318
    [Google Scholar]
  16. Ji G., Silver S. 1992; Reduction of arsenate to arsenite by the ArsC protein of the arsenic resistance operon of Staphylococcus aureus plasmid, pI258. Proc Natl Acad Sci U S A 89:9474–9478 [CrossRef]
    [Google Scholar]
  17. Kaliaeva E. S., Kholodii G. Y., Bass I. A., Gorlenko Z. M., Iur'eva O. V., Nikiforov V. G. 2001; Tn 5037 , a Tn 21 -like mercury resistance transposon from Thiobacillus ferrooxidans . Russ J Genet 37:972–975 English translation [CrossRef]
    [Google Scholar]
  18. Lewis L. A., Cylin E., Lee H. K., Saby R., Wong W., Grindley N. D. F. 2004; The left end of IS 2 : a compromise between transpositional activity and an essential promoter function that regulates the transposition pathway. J Bacteriol 186:858–865 [CrossRef]
    [Google Scholar]
  19. Liebert C. A., Hall R. M., Summers A. O. 1999; Transposon Tn 21 , flagship of the floating genome. Microbiol Mol Biol Rev 63:507–522
    [Google Scholar]
  20. Lim C.-J., Gleason F. K., Fuchs J. A. 1986; Cloning, expression and characterisation of the Anabaena thioredoxin gene in Escherichia coli . J Bacteriol 168:1258–1264
    [Google Scholar]
  21. Martin P., DeMel S., Shi J., Gladysheva T., Gatti D. L., Rosen B. P., Edwards B. F. 2001; Insights into the structure, solvation, and mechanism of ArsC arsenate reductase, a novel arsenic detoxification enzyme. Structure (Camb) 9:1071–1081 [CrossRef]
    [Google Scholar]
  22. Messens J., Martins J. C., Van Belle K. 7 other authors 2002; All intermediates of the arsenate reductase mechanism, including an intramolecular dynamic disulfide cascade. Proc Natl Acad Sci U S A 99:8506–8511 [CrossRef]
    [Google Scholar]
  23. Miller J. H. 1972 Experiments in Molecular Genetics Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  24. Mobley H. L. T., Chen C.-M., Silver S., Rosen B. P. 1983; Cloning and expression of R-factor mediated arsenate resistance in Escherichia coli . Mol Gen Genet 191:421–426 [CrossRef]
    [Google Scholar]
  25. Nagy Z., Chandler M. 2004; Regulation of transposition in bacteria. Res Microbiol 155:387–398 [CrossRef]
    [Google Scholar]
  26. Neyt C., Iriarte M., Ha Thi V., Cornelis G. R. 1997; Virulence and arsenic resistance in Yersiniae. J Bacteriol 179:612–619
    [Google Scholar]
  27. Oden K. L., Gladysheva T. B., Rosen B. P. 1994; Arsenate reduction mediated by the plasmid-encoded ArsC protein is coupled to glutathione. Mol Microbiol 12:301–306 [CrossRef]
    [Google Scholar]
  28. Powles R. E., Deane S. M., Rawlings D. E. 1995; Molecular genetic analysis of a thioredoxin gene from Thiobacillus ferrooxidans . Microbiology 141:2175–2185 [CrossRef]
    [Google Scholar]
  29. Rawlings D. E., Silver S. 1995; Mining with microbes. Bio/Technology 13:773–778 [CrossRef]
    [Google Scholar]
  30. Rawlings D. E., Coram N. J., Gardner M. N., Deane S. M. 1999; Thiobacillus caldus and Leptospirillum ferrooxidans are widely distributed in continuous flow biooxidation tanks used to treat a variety of ores and concentrates. In Biohydrometallurgy and the Environment: Towards the Mining of the 21st Century, Part A pp 777–786 Edited by Amils R., Ballester A. Amsterdam: Elsevier;
    [Google Scholar]
  31. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning: a Laboratory Manual , 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  32. Schmitt R., Altenbuchner J., Grinsted J. 1981; Complementation of transposition functions encoded by transposons Tn 501 (Hg) and Tn 1721 (Tc). In Molecular Biology, Pathogenicity and Ecology of Bacterial Plasmids pp 359–370 Edited by Levy S. B., Clowes R. C., Koenig E. C. New York: Plenum;
    [Google Scholar]
  33. Sherrat D. 1989; Tn 3 and related transposable elements: site-specific recombination and transposition. In Mobile DNA pp 163–184 Edited by Berg D. E., Howe M. M. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  34. Shi W., Wu J., Rosen B. P. 1994; Identification of a putative metal binding site in a new family of metalloregulatory proteins. J Biol Chem 269:19826–19829
    [Google Scholar]
  35. Silver S., Budd K., Leahy K. M., Shaw W. V., Hammond D., Novick R. P., Willsky J. R., Malamy M. H., Rosenburg H. 1981; Inducible plasmid-determined resistance to arsenate, arsenite, and antimony(III) in Escherichia coli and Staphylococcus aureus . J Bacteriol 172:424–430
    [Google Scholar]
  36. Tait R. C., Lundquist R. C., Kado C. I. 1982; Genetic map of the crown gall suppressive IncW plasmid pSa. Mol Gen Genet 186:10–15 [CrossRef]
    [Google Scholar]
  37. Tisa L. S., Rosen B. P. 1989; Molecular characterization of an anion pump: the ArsB protein is the membrane anchor for the ArsA protein. J Biol Chem 265:190–194
    [Google Scholar]
  38. Trindade M., Abratt V. R., Reid S. J. 2003; Induction of sucrose utilisation genes from Bifidobacterium lactis by sucrose and raffinose. Appl Environ Microbiol 69:24–32 [CrossRef]
    [Google Scholar]
  39. Tuffin M., Deane S. M., Rawlings D. E, de Groot P. 2004; Multiple sets of arsenic resistance genes are present within highly arsenic resistant industrial strains of the biomining bacterium, Acidithiobacillus caldus . Int Congr Ser 1275:165–172 [CrossRef]
    [Google Scholar]
  40. Wang G., Kennedy S. P., Fasiludeen S., Rensing C., DasSarma S. 2004; Arsenic resistance in Halobacterium sp. strain NRC-1 examined by using an improved gene knockout system. J Bacteriol 186:3187–3194 [CrossRef]
    [Google Scholar]
  41. Wu J. H., Rosen B. P. 1991; The ArsR protein is a trans -acting regulatory protein. Mol Microbiol 5:1331–1336 [CrossRef]
    [Google Scholar]
  42. Wu J. H., Rosen B. P. 1993; The arsD gene encodes a second trans -acting regulatory protein of the plasmid-encoded resistance operon. Mol Microbiol 8:615–623 [CrossRef]
    [Google Scholar]
  43. Yanisch-Perron C., Vieira J., Messing J. 1985; Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. Gene 33:103–119 [CrossRef]
    [Google Scholar]
  44. Zabeau M., Stanley K. K. 1982; Enhanced expression of the cro- β -galactosidase fusion proteins under the control of the PR promoter of the bacteriophage lambda. EMBO J 1:1217–1224
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.28131-0
Loading
/content/journal/micro/10.1099/mic.0.28131-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error