1887

Abstract

(SG) is a non-motile host-adapted salmonella that causes fowl typhoid, a severe systemic disease responsible for significant economic losses to the poultry industry worldwide. This study describes the application of a PCR-based signature-tagged mutagenesis system to identify -essential genes of SG. Ninety-six pools representing 1152 SG mutants were screened in a natural-host chicken infection model. Twenty presumptive attenuated mutants were identified and examined further. The identity of the disrupted gene in each mutant was determined by cloning of the DNA sequences adjacent to the transposon, followed by sequencing and comparison with the bacterial genome database. and competition indices were determined for each identified mutant and a total of 18 unique, attenuating gene disruptions were identified. These mutations represented six broad genomic classes: pathogenicity island-1 (SPI-1), SPI-2, SPI-10, SPI-13, SPI-14 and non-SPI-encoded virulence genes. SPI-13 and SPI-14 are newly identified and designated in this study. Most of the genes identified in this study were not previously believed or known to play a role in the pathogenesis of SG infection in chickens. Each STM identified mutant showed competitiveness and/or virulence defects, confirmed by and assays, and challenge tests. This study should contribute to a better understanding of the pathogenic mechanisms involved in progression of disease caused by SG, and identification of novel live vaccine candidates and new potential antibiotic targets.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.28126-0
2005-12-01
2024-03-19
Loading full text...

Full text loading...

/deliver/fulltext/micro/151/12/3957.html?itemId=/content/journal/micro/10.1099/mic.0.28126-0&mimeType=html&fmt=ahah

References

  1. Barrow P. A., Lovell M. A. 1989; Functional homology of virulence plasmids in Salmonella gallinarum, S. pullorum and S. typhimurium . Infect Immun 57:3136–3141
    [Google Scholar]
  2. Barrow P. A., Simpson J. M., Lovell M. A., Binns M. M. 1987; Contribution of Salmonella gallinarum large plasmid toward virulence in fowl typhoid. Infect Immun 55:388–392
    [Google Scholar]
  3. Barrow P. A., Huggins M. B., Lovell M. A. 1994; Host specificity of Salmonella infection in chickens and mice is expressed in vivo primarily at the level of the reticuloendothelial system. Infect Immun 62:4602–4610
    [Google Scholar]
  4. Baumler A. J., Tsolis R. M., Valentine P. J., Ficht T. A., Heffron F. 1997; Synergistic effect of mutations in inv A and lpf C on the ability of Salmonella typhimurium to cause murine typhoid. Infect Immun 65:2254–2259
    [Google Scholar]
  5. Bumstead N., Barrow P. 1993; Resistance to S. gallinarum, S. pullorum and S. enteritidis in inbred lines of chickens. Avian Dis 37:189–193 [CrossRef]
    [Google Scholar]
  6. Chadfield M. S., Brown D. J., Aabo S., Christensen J. P., Olsen J. E. 2003; Comparison of intestinal invasion and macrophage response of Salmonella gallinarum and other host-adapted Salmonella enterica serovars in the avian host. Vet Microbiol 92:49–64 [CrossRef]
    [Google Scholar]
  7. Chatfield S. N., Dorman C. J., Hayward C., Dougan G. 1991; Role of omp R-dependent genes in Salmonella Typhimurium virulence: mutants deficient in both omp C and omp F are attenuated in vivo. Infect Immun 59:449–452
    [Google Scholar]
  8. Darwin A. J., Miller V. L. 1999; Identification of Yersinia enterocolitica genes affecting survival in an animal host using signature-tagged transposon mutagenesis. Mol Microbiol 32:51–62 [CrossRef]
    [Google Scholar]
  9. Edwards R. A., Schifferli D. M., Maloy S. R. 2000; A role of Salmonella fimbriae in intraperitoneal infections. Proc Natl Acad Sci U S A 97:1258–1262 [CrossRef]
    [Google Scholar]
  10. Figueroa-Bossi N., Bossi L. 1999; Inducible prophages contribute to Salmonella virulence in mice. Mol Microbiol 33:167–176 [CrossRef]
    [Google Scholar]
  11. Figueroa-Bossi N., Uzzau S., Maloriol D., Bossi L. 2001; Variable assortment of prophages provides a transferable repertoire of pathogenic determinants in Salmonella . Mol Microbiol 39:260–271 [CrossRef]
    [Google Scholar]
  12. Handfield M., Levesque R. C. 1999; Strategies for isolation of in vivo expressed genes from bacteria. FEMS Microbiol Rev 23:69–91 [CrossRef]
    [Google Scholar]
  13. Hansen-Wester I., Hensel M. 2001; Salmonella pathogenicity island encoding type III secretion systems. Microb Infect 3:549–559 [CrossRef]
    [Google Scholar]
  14. Hendrixson D. R., DiRita V. J. 2004; Identification of Campylobacter jejuni genes involved in commensal colonization of the chick gastrointestinal tract. Mol Microbiol 52:471–484 [CrossRef]
    [Google Scholar]
  15. Hensel M. 2000; Salmonella pathogenicity island 2. Mol Microbiol 36:1015–1023 [CrossRef]
    [Google Scholar]
  16. Hensel M., Shea J. E., Glesson C., Jones M. D., Dalton E., Holden D. W. 1995; Simultaneous identification of bacterial virulence genes by negative selection. Science 269:400–403 [CrossRef]
    [Google Scholar]
  17. Hensel M., Shea J. E., Waterman S. R. 7 other authors 1998; Genes encoding putative effector proteins of the type III secretion system of Salmonella pathogenicity island 2 are required for bacterial virulence and proliferation in macrophages. Mol Microbiol 30:163–174 [CrossRef]
    [Google Scholar]
  18. Hutt F. B., Crawford R. D. 1960; On breeding chicks resistant to pullorum disease without exposure thereto. Can J Genet Cytol 2:357–370 [CrossRef]
    [Google Scholar]
  19. Jones M. A., Wigley P., Page K. L., Hulme S. D., Barrow P. A. 2001; Salmonella enterica serovar Gallinarum requires the Salmonella pathogenicity island 2 type III secretion system but not the Salmonella pathogenicity island 1 type III secretion system for virulence in chickens. Infect Immun 69:5471–5476 [CrossRef]
    [Google Scholar]
  20. Kaiser P., Rothwell L., Galyov E. E., Barrow P. A., Burnside J., Wigley P. 2000; Differential cytokine expression in avian cells in response to invasion by Salmonella typhimurium, Salmonella enteritidis and Salmonella gallinarum . Microbiology 146:3217–3226
    [Google Scholar]
  21. Lau G. W., Haataja S., Lonetto M., Kensit S. E., Marra A., Brayant A. P. 2001; A functional genomic analysis of Streptococcus pneumoniae virulence. Mol Microbiol 40:555–571 [CrossRef]
    [Google Scholar]
  22. Lee A. K., Detweiler C. S., Falkow S. 2000; OmpR regulates two-component system SsrA-SsrB in Salmonella pathogenicity island-2. J Bacteriol 182:771–781 [CrossRef]
    [Google Scholar]
  23. Lee Y. J., Kim K. S., Kwon Y. K., Tak R. B. 2003; Biochemical characteristics and anti-microbial susceptibility of S. gallinarum isolated in Korea. J Vet Sci 4:161–166
    [Google Scholar]
  24. Lehoux D. E., Levesque R. C. 2000; Detection of genes essential in specific niches by signature tagged mutagenesis. Curr Opin Biotechnol 11:434–439 [CrossRef]
    [Google Scholar]
  25. Lehoux D. E., Sanschagrin F., Levesque R. C. 1999; Defined oligonucleotide tag pools and PCR screening in signature-tagged mutagenesis of essential genes from bacteria. BioTechniques 26:473–480
    [Google Scholar]
  26. Lehoux D. E., Sanschagrin F., Levesque R. C. 2001; Discovering essential and infection related genes. Curr Opin Microbiol 4:515–519 [CrossRef]
    [Google Scholar]
  27. McClelland M., Sanderson K. E., Spieth J. 23 other authors 2001; Complete genome sequence of Salmonella enterica serovar Typhimurium LT2. Nature 413:852–856 [CrossRef]
    [Google Scholar]
  28. Mirold S., Rabsch W., Tschape H., Hardt W. D. 2001; Transfer of the Salmonella type III effector sop E between unrelated phage families. J Mol Biol 312:7–16 [CrossRef]
    [Google Scholar]
  29. Morgan E., Campbell J. D., Rowe S. C., Bispham J., Stevens M. P., Bowen A. J., Barrow P. A., Maskell D. J., Wallis T. S. 2004; Identification of host-specific colonization factors of Salmonella enterica serovar Typhimurium. Mol Microbiol 54:994–1010 [CrossRef]
    [Google Scholar]
  30. Ogunniyi A. D., Manning P. A., Kotlarski I. 1994; A Salmonella enteritidis 11RX pilin induces strong T-lymphocyte responses. Infect Immun 62:5376–5383
    [Google Scholar]
  31. Oh G. H., Choi W. P. 1994; Studies on Salmonella isolated from chicks. Kor J Vet Res 34:501–510
    [Google Scholar]
  32. Park K. Y., Lee S. U., Yoo H. S., Yeh J. K. 1996; Epidemiological studies of Salmonella gallinarum infection in Korea: infection routes, biochemical characteristics, antimicrobial drug susceptibility pattern and plasmid profile. Kor J Infect Dis 28:413–421
    [Google Scholar]
  33. Parkhill J., Dougan G., James K. D. 38 other authors 2001; Complete genome sequence of a multiple drug resistant S. enterica serovar Typhi CT18. Nature 413:848–852 [CrossRef]
    [Google Scholar]
  34. Pascopella L., Raupach B., Ghori N., Monack D., Falkow S., Small P. L. 1995; Host restriction phenotypes of Salmonella typhi and Salmonella gallinarum . Infect Immun 63:4329–4335
    [Google Scholar]
  35. Patel A. R., Shah D. H., Roy A. 2004; Relationship of plasmids to virulence associated properties and in vivo transfer of drug resistance in Salmonella gallinarum . In 48th Annual Meeting of the Korean Society of Veterinary Science Daejon, Korea:
    [Google Scholar]
  36. Paulin S. M., Watson P. R., Benmore A. R., Stevens A. P., Jones P. W., Villarreal-Ramos B., Wallis T. S. 2002; Analysis of Salmonella enterica serotype-host specificity in calves: avirulence of S. enterica serotype Gallinarum correlates with bacterial dissemination from mesenteric lymph nodes and persistence in vivo . Infect Immun 70:6788–6797 [CrossRef]
    [Google Scholar]
  37. Pomeroy B. S., Nagaraja K. V. 1991; Fowl typhoid. In Diseases of Poultry . , 9th edn. pp 87–99 Edited by Calnek B. W., Barnes H. J., Beard C. W., Reid W. M., Yoder H. W. Jr Ames, IA: Iowa State University Press;
  38. Porter S. B., Curtiss R. 1997; Effect of mutations on Salmonella virulence and colonization in 1-day-old white leghorn chicks. Avian Dis 41:45–57 [CrossRef]
    [Google Scholar]
  39. Reed L. J., Muench H. 1938; A simple method of estimating fifty percent endpoints. Am J Hyg 27:493–497
    [Google Scholar]
  40. Rychlik I., Lovell M. A., Barrow P. A. 1998; The presence of genes homologous to the K88 genes faeH and faeI on the virulence plasmid of Salmonella gallinarum . FEMS Microbiol Lett 159:255–260 [CrossRef]
    [Google Scholar]
  41. Shah D. H., Roy A. 2001; Transferable drug resistance, bacteriocinogeny and serum resistance in Salmonella Gallinarum avian strains. Ind J Poult Sci 36:106–109
    [Google Scholar]
  42. Shah D. H., Roy A., Purohit J. H. 2001; Characterization of Salmonella Gallinarum avian strains isolated from Gujarat State. Ind J Comp Microbiol Immunol Infect Dis 22:131–133
    [Google Scholar]
  43. Shah D. H., Park J. H., Cho M. R., Kim M. C., Chae J. S. 2005a; Allele-specific PCR method based on rfb S sequence for distinguishing Salmonella Gallinarum from Salmonella Pullorum: serotype specific rfb S sequence polymorphism. J Microbiol Methods 60:169–177 [CrossRef]
    [Google Scholar]
  44. Shah D. H., Seol J. W., Park S. Y. 7 other authors 2005b; Control of fowl typhoid using tissue culture medium waste after harvest of Korean wild ginseng ( Panax ginseng . J Appl Poult Res 14:455–462 [CrossRef]
    [Google Scholar]
  45. Shivaprasad H. L. 2000; Fowl typhoid and Pullorum disease. Rev Sci Tech 19:405–424
    [Google Scholar]
  46. Silva E. N., Snoeyenbos G. H., Weinack O. M., Smyser C. F. 1981; Studies on use of 9R strain of Salmonella Gallinarum as a vaccine in chickens. Avian Dis 25:38–52 [CrossRef]
    [Google Scholar]
  47. Smith H. W. 1956; The use of live vaccines in experimental Salmonella gallinarum infection in chickens with observations on their interference effect. J Hyg 54:419–432 [CrossRef]
    [Google Scholar]
  48. Turner A. K., Lovell M. A., Hulme S. D., Zhang-Barber L., Barrow P. A. 1998; Identification of S. typhimurium genes required for colonization of the chicken alimentary tract and for virulence in newly hatched chicks. Infect Immun 66:2099–2106
    [Google Scholar]
  49. Turner S. M., Moir J. W. B., Griffiths L., Overton T. W., Smith H., Cole J. A. 2005; Mutational and biochemical analysis of cytochrome c ′, a nitric oxide-binding lipoprotein important for adaptation of Neisseria gonorrhoea to oxygen-limited growth. Biochem J 388:545–553 [CrossRef]
    [Google Scholar]
  50. Wallis T. S., Wood M., Watson P., Paulin S., Jones M., Galyov E. 1999; Sips, Sops, and SPIs but not stn influence Salmonella enteropathogenesis. Adv Exp Med Biol 473:275–280
    [Google Scholar]
  51. Wigley P., Hulme S. D., Bumstead N., Barrow P. A. 2002; In vivo and in vitro studies of genetic resistance to systemic salmonellosis in the chicken encoded by the SAL1 locus. Microbes Infect 4:1111–1120 [CrossRef]
    [Google Scholar]
  52. Wilson R. L., Elthon J., Clegg S., Jones B. D. 2000; Salmonella enterica serovars Gallinarum and Pullorum expressing Salmonella enterica serovar Typhimurium type 1 fimbriae exhibit increased invasiveness for mammalian cells. Infect Immun 68:4782–4785 [CrossRef]
    [Google Scholar]
  53. Zhao Y., Jansen R., Gaastra W., Arkesteijn G., van der Zeijst B. A., van Putten J. P. 2002; Identification of genes affecting Salmonella enterica serovar Enteritidis infection in chicken macrophages. Infect Immun 70:5319–5321 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.28126-0
Loading
/content/journal/micro/10.1099/mic.0.28126-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error