1887

Abstract

releases monomeric peptidoglycan (PG) fragments during growth. These PG fragments affect pathogenesis-related phenotypes including induction of inflammatory cytokines and killing of ciliated fallopian tube cells. Although the biological activities of these molecules have been established in multiple systems, the genes and gene products responsible for their production in have not been determined. The authors previously identified genes for three lytic transglycosylase homologues (, and ) in the genome sequence. Mutation of was found to affect PG fragment release, and mutation of affected cell separation. In this study the effects of complete deletion or point mutations in were characterized. Point mutations were introduced by a combination of insertion-duplication mutagenesis and positive and negative selection, thereby generating selectable marker-less mutations. The deletion mutant had normal growth characteristics and was not affected in PG fragment release. When expressed in , gonococcal LtgB was able to substitute for lambda endolysin to cause cell lysis. Mutation of the predicted catalytic-site glutamic acid residue did not decrease lysis in this system. However, mutation of a nearby glutamic acid residue eliminated lysis activity.

Keyword(s): PG, peptidoglycan
Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.28125-0
2005-09-01
2019-10-18
Loading full text...

Full text loading...

/deliver/fulltext/micro/151/9/mic1513081.html?itemId=/content/journal/micro/10.1099/mic.0.28125-0&mimeType=html&fmt=ahah

References

  1. Bienkowska-Szewczyk, K., Lipinska, B. & Taylor, A. ( 1981; ). The R gene product of bacteriophage lambda is the murein transglycosylase. Mol Gen Genet 184, 111–114.[CrossRef]
    [Google Scholar]
  2. Blackburn, N. T. & Clarke, A. J. ( 2001; ). Identification of four families of peptidoglycan lytic transglycosylases. J Mol Evol 52, 78–84.[CrossRef]
    [Google Scholar]
  3. Burroughs, M., Prasad, S., Cabellos, C., Mendelman, P. M. & Tuomanen, E. ( 1993; ). The biological activities of peptidoglycan in experimental Haemophilus influenzae meningitis. J Infect Dis 167, 464–468.[CrossRef]
    [Google Scholar]
  4. Chapman, S. J. & Perkins, H. R. ( 1983; ). Peptidoglycan-degrading enzymes in ether-treated cells of Neisseria gonorrhoeae. J Gen Microbiol 129, 877–883.
    [Google Scholar]
  5. Cloud, K. A. & Dillard, J. P. ( 2002; ). A lytic transglycosylase of Neisseria gonorrhoeae is involved in peptidoglycan-derived cytotoxin production. Infect Immun 70, 2752–2757.[CrossRef]
    [Google Scholar]
  6. Cloud, K. A. & Dillard, J. P. ( 2004; ). Mutation of a single lytic transglycosylase causes aberrant septation and inhibits cell separation of Neisseria gonorrhoeae. J Bacteriol 186, 7811–7814.[CrossRef]
    [Google Scholar]
  7. Dijkstra, A. & Keck, W. ( 1996; ). Identification of new members of the lytic transglycosylase family in Haemophilus influenzae and Escherichia coli. Microb Drug Resist 2, 141–145.[CrossRef]
    [Google Scholar]
  8. Dijkstra, B. W. & Thunnissen, A.-M. W. H. ( 1994; ). ‘Holy’ proteins. II. The soluble lytic transglycosylase. Curr Opin Struct Biol 4, 810–813.[CrossRef]
    [Google Scholar]
  9. Dillard, J. P. & Seifert, H. S. ( 1997; ). A peptidoglycan hydrolase similar to bacteriophage endolysins acts as an autolysin in Neisseria gonorrhoeae. Mol Microbiol 25, 893–901.[CrossRef]
    [Google Scholar]
  10. Dokter, W. H. A., Dijkstra, A. J., Koopmans, S. B., Stulp, B. K., Keck, W., Halie, M. R. & Vellenga, E. ( 1994; ). G(Anh)MTetra, a natural bacterial cell wall breakdown product induces interleukin-1beta and interleukin-6 expression in human monocytes. J Biol Chem 269, 4201–4206.
    [Google Scholar]
  11. Fleming, T. J., Wallsmith, D. E. & Rosenthal, R. S. ( 1986; ). Arthropathic properties of gonococcal peptidoglycan fragments: implications for the pathogenesis of disseminated gonococcal disease. Infect Immun 52, 600–608.
    [Google Scholar]
  12. Gunn, J. S. & Stein, D. C. ( 1996; ). Use of a nonselective transformation technique to construct a multiply restriction/modification-deficient mutant of Neisseria gonorrhoeae. Mol Gen Genet 251, 509–517.
    [Google Scholar]
  13. Guzman, L. M., Belin, D., Carson, M. J. & Beckwith, J. ( 1995; ). Tight regulation, modulation, and high-level expression by vectors containing the arabinose PBAD promoter. J Bacteriol 177, 4121–4130.
    [Google Scholar]
  14. Hamilton, H. L., Schwartz, K. J. & Dillard, J. P. ( 2001; ). Insertion-duplication mutagenesis of Neisseria: use in characterization of DNA transfer genes in the gonococcal genetic island. J Bacteriol 183, 4718–4726.[CrossRef]
    [Google Scholar]
  15. Hamilton, H. L., Domínguez, N. M., Schwartz, K. J., Hackett, K. T. & Dillard, J. P. ( 2005; ). Neisseria gonorrhoeae secretes chromosomal DNA via a novel type IV secretion system. Mol Microbiol 55, 1704–1721.[CrossRef]
    [Google Scholar]
  16. Hanych, B., Kedzierska, S., Walderich, B., Uznanski, B. & Taylor, A. ( 1993; ). Expression of the Rz gene and the overlapping Rz1 reading frame present at the right end of the bacteriophage lambda genome. Gene 129, 1–8.[CrossRef]
    [Google Scholar]
  17. Hebeler, B. H. & Young, F. E. ( 1976; ). Mechanism of autolysis of Neisseria gonorrhoeae. J Bacteriol 126, 1186–1193.
    [Google Scholar]
  18. Heidrich, C., Ursinus, A., Berger, J., Schwarz, H. & Höltje, J.-V. ( 2002; ). Effects of multiple deletions of murein hydrolases on viability, septum cleavage, and sensitivity to large toxic molecules in Escherichia coli. J Bacteriol 184, 6093–6099.[CrossRef]
    [Google Scholar]
  19. Höltje, J.-V. ( 1998; ). Growth of the stress-bearing and shape-maintaining murein sacculus of Escherichia coli. Microbiol Mol Biol Rev 62, 181–203.
    [Google Scholar]
  20. Höltje, J.-V., Mirelman, D., Sharon, N. & Schwartz, U. ( 1975; ). Novel type of murein transglycosylase in Escherichia coli. J Bacteriol 124, 1067–1076.
    [Google Scholar]
  21. Jespers, L., Sonveaux, E. & Fastrez, J. ( 1992; ). Is the bacteriophage lambda lysozyme an evolutionary link or a hybrid between the C and V-type lysozymes? Homology analysis and detection of the catalytic amino acid residues. J Mol Biol 228, 529–538.[CrossRef]
    [Google Scholar]
  22. Johnston, D. M. & Cannon, J. G. ( 1999; ). Construction of mutant strains of Neisseria gonorrhoeae lacking new antibiotic markers using a two gene cassette with positive and negative selection. Gene 236, 179–184.[CrossRef]
    [Google Scholar]
  23. Kellogg, D. S., Jr, Peacock, W. L., Jr, Deacon, W. E., Brown, L. & Pirkle, C. L. ( 1963; ). Neisseria gonorrhoeae. I. Virulence genetically linked to clonal variation. J Bacteriol 85, 1274–1279.
    [Google Scholar]
  24. Koonin, E. V. & Rudd, K. E. ( 1994; ). A conserved domain in putative bacterial and bacteriophage transglycosylases. Trends Biochem Sci 19, 106–107.[CrossRef]
    [Google Scholar]
  25. Lederberg, J. ( 1951; ). Streptomycin resistance: a genetically recessive mutation. J Bacteriol 61, 549–550.
    [Google Scholar]
  26. Leung, A. K., Duewel, H. S., Honek, J. F. & Berghuis, A. M. ( 2001; ). Crystal structure of the lytic transglycosylase from bacteriophage lambda in complex with hexa-N-acetylchitohexaose. Biochemistry 40, 5665–5673.[CrossRef]
    [Google Scholar]
  27. Lommatzsch, J., Templin, M. F., Kraft, A. R., Vollmer, W. & Höltje, J.-V. ( 1997; ). Outer membrane localization of murein hydrolases: MltA, a third lipoprotein lytic transglycosylase in Escherichia coli. J Bacteriol 179, 5465–5470.
    [Google Scholar]
  28. Luker, K. E., Tyler, A. N., Marshall, G. R. & Goldman, W. E. ( 1995; ). Tracheal cytotoxin structural requirements for respiratory epithelial damage in pertussis. Mol Microbiol 16, 733–743.[CrossRef]
    [Google Scholar]
  29. Melly, M. A., McGee, Z. A. & Rosenthal, R. S. ( 1984; ). Ability of monomeric peptidoglycan fragments from Neisseria gonorrhoeae to damage human fallopian-tube mucosa. J Infect Dis 149, 378–386.[CrossRef]
    [Google Scholar]
  30. Morse, S. A. & Bartenstein, L. ( 1974; ). Factors affecting autolysis of Neisseria gonorrhoeae. Proc Soc Exp Biol Med 145, 1418–1421.[CrossRef]
    [Google Scholar]
  31. Park, J. T. ( 1995; ). Why does Escherichia coli recycle its cell wall peptides? Mol Microbiol 17, 421–426.[CrossRef]
    [Google Scholar]
  32. Sambrook, J., Fritsch, E. F. & Maniatis, T. ( 1989; ). Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  33. Segal, E., Billyard, E., So, M., Storzbach, S. & Meyer, T. F. ( 1985; ). Role of chromosomal rearrangement in N. gonorrhoeae pilus phase variation. Cell 40, 293–300.[CrossRef]
    [Google Scholar]
  34. Sinha, R. K. & Rosenthal, R. S. ( 1980; ). Release of soluble peptidoglycan from growing gonococci: demonstration of anhydro-muramyl-containing fragments. Infect Immun 29, 914–925.
    [Google Scholar]
  35. Stefanova, M. E., Tomberg, J., Olesky, M., Höltje, J.-V., Gutheil, W. G. & Nicholas, R. A. ( 2003; ). Neisseria gonorrhoeae penicillin-binding protein 3 exhibits exceptionally high carboxypeptidase and beta-lactam binding activities. Biochemistry 42, 14614–14625.[CrossRef]
    [Google Scholar]
  36. Sung, C. K., Li, H., Claverys, J. P. & Morrison, D. A. ( 2001; ). An rpsL cassette, Janus, for gene replacement through negative selection in Streptococcus pneumoniae. Appl Environ Microbiol 67, 5190–5196.[CrossRef]
    [Google Scholar]
  37. Thunnissen, A.-M. W. H., Dijkstra, A. J., Kalk, K. H., Rozeboom, H. J., Engel, H., Keck, W. & Dijkstra, B. W. ( 1994; ). Doughnut-shaped structure of a bacterial muramidase revealed by X-ray crystallography. Nature 367, 750–753.[CrossRef]
    [Google Scholar]
  38. Thunnissen, A.-M. W. H., Rozeboom, H. J., Kalk, K. H. & Dijkstra, B. W. ( 1995; ). Structure of the 70-kDa soluble lytic translgycosylase complexed with bulgecin A. Implications for the enzymatic mechanism. Biochemistry 34, 12729–12737.[CrossRef]
    [Google Scholar]
  39. van Asselt, E. J., Dijkstra, A. J., Kalk, K. H., Takacs, B., Keck, W. & Dijkstra, B. W. ( 1999a; ). Crystal structure of Escherichia coli lytic transglycosylase Slt35 reveals a lysozyme-like catalytic domain with an EF-hand. Structure Fold Des 7, 1167–1180.[CrossRef]
    [Google Scholar]
  40. van Asselt, E. J., Thunnissen, A.-M. W. H. & Dijkstra, B. W. ( 1999b; ). High resolution crystal structures of the Escherichia coli lytic transglycosylase Slt70 and its complex with a peptidoglycan fragment. J Mol Biol 291, 877–898.[CrossRef]
    [Google Scholar]
  41. van Asselt, E. J., Kalk, K. H. & Dijkstra, B. W. ( 2000; ). Crystallographic studies of the interactions of Escherichia coli lytic transglycosylase Slt35 with peptidoglycan. Biochemistry 39, 1924–1934.[CrossRef]
    [Google Scholar]
  42. Young, R. ( 1992; ). Bacteriophage lysis: mechanism and regulation. Microbiol Rev 56, 430–481.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.28125-0
Loading
/content/journal/micro/10.1099/mic.0.28125-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error