1887

Abstract

In , where homologous recombination is inefficient, specific gene targeting could only be achieved by using replicative, plasmids. To improve the probability of selecting rare recombination events without fastidious, extensive passaging of the transformants, a new targeting vector was constructed, which was used to inactivate the gene encoding the IIA component of the glucose phosphotransferase system (PTS) permease. Selection of recombinants was based on a two-step strategy using two distinct selection markers, one of which could only be expressed once recombination had occurred through one single crossover at the target gene. According to this strategy, spiroplasmal transformants were screened and multiplied in the presence of gentamicin before the recombinants were selected for their resistance to tetracycline. In contrast to the wild-type strain GII-3, the -disrupted mutant GII3-gt1 used neither glucose nor trehalose, indicating that in the glucose and trehalose PTS permeases function with a single IIA component. In addition, the feasibility of using the transposon TnpR/res recombination system to produce unmarked mutations in was demonstrated. In an arginine deiminase (-disrupted) mutant, the gene flanked by the sequences was efficiently excised from the chromosome through expression of the TnpR resolvase from a replicative plasmid. Due to incompatibility, plasmid loss occurred spontaneously when selection pressure was removed. This approach will be helpful for constructing unmarked mutations and generating multiple mutants with the same selection marker in . It should also be relevant to other species of mollicutes.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.28123-0
2005-08-01
2019-11-22
Loading full text...

Full text loading...

/deliver/fulltext/micro/151/8/mic1512793.html?itemId=/content/journal/micro/10.1099/mic.0.28123-0&mimeType=html&fmt=ahah

References

  1. André, A., Maccheroni, W., Doignon, F., Garnier, M. & Renaudin, J. ( 2003; ). Glucose and trehalose PTS permeases of Spiroplasma citri probably share a single IIA domain, enabling the spiroplasma to adapt quickly to carbohydrate changes in its environment. Microbiology 149, 2687–2696.[CrossRef]
    [Google Scholar]
  2. André, A., Maucourt, M., Moing, A., Rolin, D. & Renaudin, J. ( 2005; ). Sugar import and phytopathogenicity of Spiroplasma citri: glucose and fructose play distinct roles. Mol Plant Microbe Interact 18, 33–42.[CrossRef]
    [Google Scholar]
  3. Bardarov, S., Bardarov, S., Jr, Pavelka, M. S., Jr, Sambandamurthy, V., Larsen, M., Tufariello, J., Chan, J., Hatfull, G. & Jacobs, W. R., Jr ( 2002; ). Specialized transduction: an efficient method for generating marked and unmarked targeted gene disruptions in Mycobacterium tuberculosis, M. bovis BCG and M. smegmatis. Microbiology 148, 3007–3017.
    [Google Scholar]
  4. Barré, A., de Daruvar, A. & Blanchard, A. ( 2004; ). MolliGen, a database dedicated to the comparative genomics of mollicutes. Nucleic Acids Res 32, D307–D310.[CrossRef]
    [Google Scholar]
  5. Boutareaud, A., Danet, J. L., Garnier, M. & Saillard, C. ( 2004; ). Disruption of a gene predicted to encode a solute binding protein of an ABC transporter reduces transmission of Spiroplasma citri by the leafhopper Circulifer haematoceps. Appl Environ Microbiol 70, 3960–3967.[CrossRef]
    [Google Scholar]
  6. Bové, J. M., Renaudin, J., Saillard, C., Foissac, X. & Garnier, M. ( 2003; ). Spiroplasma citri, a plant pathogenic mollicute: relationships with its two hosts, the plant and the leafhopper vector. Annu Rev Phytopathol 41, 483–500.[CrossRef]
    [Google Scholar]
  7. Camilli, A., Beattie, D. T. & Mekalanos, J. J. ( 1994; ). Use of genetic recombination as a reporter of gene expression. Proc Natl Acad Sci U S A 91, 2634–2638.[CrossRef]
    [Google Scholar]
  8. Chang, C. J., Renaudin, J. & Bové, J. M. ( 1994; ). Nutritional requirements of Spiroplasma citri. IOM Lett 3, 520.
    [Google Scholar]
  9. Cunin, R., Glansdorff, N., Piérard, A. & Stalon, V. ( 1986; ). Biosynthesis and metabolism of arginine in bacteria. Microbiol Rev 50, 314–352.
    [Google Scholar]
  10. Dhandayuthapani, S., Rasmussen, W. G. & Baseman, J. B. ( 1999; ). Disruption of gene mg218 of Mycoplasma genitalium through homologous recombination leads to an adherence-deficient phenotype. Proc Natl Acad Sci U S A 96, 5227–5232.[CrossRef]
    [Google Scholar]
  11. Duret, S., Danet, J. L., Garnier, M. & Renaudin, J. ( 1999; ). Gene disruption through homologous recombination in Spiroplasma citri: an scm1-disrupted motility mutant is pathogenic. J Bacteriol 181, 7449–7456.
    [Google Scholar]
  12. Duret, S., Berho, N., Danet, J. L., Garnier, M. & Renaudin, J. ( 2003; ). Spiralin is not essential for helicity, motility, or pathogenicity but is required for efficient transmission of Spiroplasma citri by its leafhopper vector Circulifer haematoceps. Appl Environ Microbiol 69, 6225–6234.[CrossRef]
    [Google Scholar]
  13. Dybvig, K. & Volker, L. L. ( 1996; ). Molecular biology of mycoplasmas. Annu Rev Microbiol 50, 25–57.[CrossRef]
    [Google Scholar]
  14. Dybvig, K. & Woodward, A. ( 1992; ). Construction of recA mutants of Acholeplasma laidlawii by insertional inactivation with a homologous DNA fragment. Plasmid 28, 262–266.[CrossRef]
    [Google Scholar]
  15. Fletcher, J., Wayadande, A., Melcher, U. & Ye, F. ( 1998; ). The phytopathogenic mollicute-insect vector interface: a closer look. Phytopathology 88, 1351–1358.[CrossRef]
    [Google Scholar]
  16. Florkin, M. & Jeuniaux, C. ( 1974; ). Haemolymph: composition. In the Physiology of Insecta, vol. V, pp. 255–307. Edited by M. Rockstein. New York: Academic Press.
  17. Foissac, X., Danet, J. L., Saillard, C., Whitcomb, R. F. & Bové, J. M. ( 1996; ). Experimental infection of plants by spiroplasmas. In Molecular and Diagnostic Procedures in Mycoplasmology, vol. 2, pp. 385–389. Edited by S. Razin & J. G. Tully. New York: Academic Press.
  18. Foissac, X., Saillard, C., Danet, J. L., Gaurivaud, P., Paré, C., Laigret, F. & Bové, J. M. ( 1997; ). Mutagenesis by insertion of transposon Tn4001 into the genome of Spiroplasma citri: characterization of mutants affected in plant pathogenicity and transmission to the plant by the leafhopper vector Circulifer haematoceps. Mol Plant Microbe Interact 10, 454–461.[CrossRef]
    [Google Scholar]
  19. Gaurivaud, P., Danet, J. L., Laigret, F., Garnier, M. & Bové, J. M. ( 2000a; ). Fructose utilization and phytopathogenicity of Spiroplasma citri. Mol Plant Microbe Interact 13, 1145–1155.[CrossRef]
    [Google Scholar]
  20. Gaurivaud, P., Laigret, F., Verdin, E., Garnier, M. & Bové, J. M. ( 2000b; ). Fructose operon mutants of Spiroplasma citri. Microbiology 146, 2229–2236.
    [Google Scholar]
  21. Grindley, N. D. F. ( 2002; ). The movement of Tn3-like elements: transposition and cointegrate resolution. In Mobile DNA II, pp. 272–302. Edited by N. L. Craig, R. Craigie, M. Gellert & A. M. Lambowitz. Washington, DC: American Society for Microbiology.
  22. Igwegbe, E. C. & Thomas, C. ( 1978; ). Occurrence of enzymes of arginine dihydrolase pathway in Spiroplasma citri. J Gen Appl Microbiol 24, 261–269.[CrossRef]
    [Google Scholar]
  23. Jacob, C., Nouzières, F., Duret, S., Bové, J. M. & Renaudin, J. ( 1997; ). Isolation, characterization, and complementation of a motility mutant of Spiroplasma citri. J Bacteriol 179, 4802–4810.
    [Google Scholar]
  24. Lartigue, C., Duret, S., Garnier, M. & Renaudin, J. ( 2002; ). New plasmid vectors for specific gene targeting in Spiroplasma citri. Plasmid 48, 149–159.[CrossRef]
    [Google Scholar]
  25. Lee, I.-M., Davis, R. E. & Gundersen-Rindal, D. E. ( 2000; ). Phytoplasma: phytopathogenic mollicutes. Annu Rev Microbiol 54, 221–255.[CrossRef]
    [Google Scholar]
  26. Maghnouj, A., de Sousa Cabral, T. F., Stalon, V. & Vander Wauven, C. ( 1998; ). The arcABDC gene cluster, encoding the arginine deiminase pathway of Bacillus licheniformis and its activation by the arginine repressor argR. J Bacteriol 180, 6468–6475.
    [Google Scholar]
  27. Malaga, W., Perez, E. & Guilhot, C. ( 2003; ). Production of unmarked mutations in mycobacteria using site-specific recombination. FEMS Microbiol Lett 219, 261–268.[CrossRef]
    [Google Scholar]
  28. Markham, P. F., Kanci, A., Czifra, G., Sundquist, B., Hains, P. & Browning, G. F. ( 2003; ). Homologue of macrophage-activating lipoprotein in Mycoplasma gallisepticum is not essential for growth and pathogenicity in tracheal organ cultures. J Bacteriol 185, 2538–2547.[CrossRef]
    [Google Scholar]
  29. Miles, R. J. ( 1992; ). Catabolism in mollicutes. J Gen Microbiol 138, 1773–1783.[CrossRef]
    [Google Scholar]
  30. Ohtani, K., Bando, M., Swe, T., Banu, S., Oe, M., Hayashi, H. & Shimizu, T. ( 1997; ). Collagenase gene (colA) is located in the 3′-flanking region of the perfringolysin O (pfoA) locus in Clostridium perfringens. FEMS Microbiol Lett 146, 155–159.[CrossRef]
    [Google Scholar]
  31. Pashley, C. A., Parish, T., McAdam, R. A., Duncan, K. & Stoker, N. G. ( 2003; ). Gene replacement in mycobacteria by using incompatible plasmids. Appl Environ Microbiol 69, 517–523.[CrossRef]
    [Google Scholar]
  32. Pollack, J. D., Williams, M. V. & McElhaney, R. N. ( 1997; ). The comparative metabolism of the mollicutes (mycoplasmas): the utility for taxonomic classification and the relationship of putative gene annotation and phylogeny to enzymatic function in the smallest free-living cells. Crit Rev Microbiol 23, 269–354.[CrossRef]
    [Google Scholar]
  33. Razin, S., Yogev, D. & Naot, Y. ( 1998; ). Molecular biology and pathogenicity of mycoplasmas. Microbiol Mol Biol Rev 62, 1094–1156.
    [Google Scholar]
  34. Reed, R. R. ( 1981; ). Transposon-mediated site-specific recombination: a defined in vitro system. Cell 25, 713–719.[CrossRef]
    [Google Scholar]
  35. Renaudin, J. ( 2002; ). Extrachromosomal elements and gene transfer. In Molecular Biology and Pathogenicity of Mycoplasmas, pp. 347–370. Edited by S. Razin & R. Herrmann. New York: Kluwer Academic/Plenum Publishers.
  36. Renaudin, J. & Lartigue, C. ( 2005; ). OriC plasmids as gene vectors for mollicutes. In Mycoplasmas: Pathogenesis, Molecular Biology, and Emerging Strategies for Control, pp. 3–30. Edited by A. Blanchard & G. Browning. Norwich, UK: Horizon Scientific Press.
  37. Reyrat, J. M., Pelicic, V., Gicquel, B. & Rappuoli, R. ( 1998; ). Counter selectable markers: untapped tools for bacterial genetics and pathogenesis. Infect Immun 66, 4011–4017.
    [Google Scholar]
  38. Saglio, P., Laflèche, D., Bonissol, C. & Bové, J. M. ( 1971; ). Culture in vitro des mycoplasmes associés au stubborn des agrumes et leur observation au microscope électronique. C R Acad Sci 272, 1387–1390.
    [Google Scholar]
  39. Saglio, P., Lhospital, M., Laflèche, D., Dupont, G., Bové, J. M., Tully, J. G. & Freundt, E. A. ( 1973; ). Spiroplasma citri gen. and sp. nov.: a mycoplasma-like organism associated with “stubborn” disease of citrus. Int J Syst Bacteriol 23, 191–204.[CrossRef]
    [Google Scholar]
  40. Sambrook, J., Fritsch, E. F. & Maniatis, T. ( 1989; ). Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  41. Seemüller, E., Garnier, M. & Schneider, B. ( 2002; ). Mycoplasmas of plants and insects. In Molecular Biology and Pathogenicity of Mycoplasmas, pp. 91–115. Edited by S. Razin & R. Herrmann. New York: Kluwer Academic/Plenum Publishers.
  42. Stamburski, C., Renaudin, J. & Bové, J. M. ( 1991; ). First step toward a virus-derived vector for gene cloning and expression in spiroplasmas, organisms which read UGA as a tryptophan codon: synthesis of chloramphenicol acetyltransferase in Spiroplasma citri. J Bacteriol 173, 2225–2230.
    [Google Scholar]
  43. Stevens, C., Cody, R. M., Gudauskas, R. T. & Patterson, A. ( 1984; ). Arginine aminopeptidase activity of phytopathogenic spiroplasmas. Isr J Med Sci 20, 1022–1024.
    [Google Scholar]
  44. Townsend, R. ( 1976; ). Arginine metabolism by Spiroplasma citri. J Gen Microbiol 94, 417–420.[CrossRef]
    [Google Scholar]
  45. Vignault, J. C., Bové, J. M., Saillard, C. & 17 other authors ( 1980; ). Mise en culture de spiroplasmes à partir de matériel végétal et d'insectes provenant de pays circum méditerranéens et du Proche Orient. C R Acad Sci III 290, 775–780.
    [Google Scholar]
  46. Weisburg, W. G., Tully, J. G., Rose, D. L. & 9 other authors ( 1989; ). A phylogenetic analysis of the mycoplasmas: basis for their classification. J Bacteriol 171, 6455–6467.
    [Google Scholar]
  47. Whitcomb, R. F. ( 1983; ). Culture media for spiroplasmas. Methods Mycoplasmol 1, 147–159.
    [Google Scholar]
  48. Wyatt, G. R. ( 1967; ). The biochemistry of sugars and polysaccharides in insects. In Advances in Insect Physiology, vol. IV, pp. 287–360. Edited by J. W. L. Beament, J. E. Treherne & V. B. Wigglesworth. New York: Academic Press.
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.28123-0
Loading
/content/journal/micro/10.1099/mic.0.28123-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error