1887

Abstract

is an enteric protozoan that exclusively infects human beings. This parasite requires iron for its metabolic functions. Lactoferrin is a mammalian glycoprotein that chelates extracellular iron on mucosal surfaces, including the surface of the large intestine, where initiates infection. This work examined the interaction of trophozoites with human hololactoferrin (iron-saturated lactoferrin). A minimum concentration of 50 μM Fe from hololactoferrin supported growth of the amoeba. Amoebic binding sites for hololactoferrin were different from those for human apolactoferrin, holotransferrin and haemoglobin. One amoebic hololactoferrrin-binding polypeptide of 90 kDa was found, which was not observed after treatment of trophozoites with trypsin. Hololactoferrin-binding-protein levels increased in amoebas starved of iron, or grown in hololactoferrin. Internalization of hololactoferrin was inhibited by filipin. Endocytosed hololactoferrin colocalized with an anti-chick embryo caveolin mAb in amoebic vesicles, and lactoferrin was further detected in acidic vesicles; amoebic caveolin of 22 kDa was detected by Western blotting using this antibody. Cysteine proteases from amoebic extracts were able to cleave hololactoferrin. Together, these data indicate that trophozoites bind to hololactoferrin through specific membrane lactoferrin-binding proteins. This ferric protein might be internalized via caveolae-like microdomains, then used as an iron source, and degraded.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.28121-0
2005-12-01
2019-11-13
Loading full text...

Full text loading...

/deliver/fulltext/micro/151/12/3859.html?itemId=/content/journal/micro/10.1099/mic.0.28121-0&mimeType=html&fmt=ahah

References

  1. Affonso, A. L., Benchimol, M., Ribeiro, K. C., Lins, U. & De Souza, W. ( 1994; ). Further studies on the endocytic activity of Tritrichomonas foetus. Parasitol Res 80, 403–413.[CrossRef]
    [Google Scholar]
  2. Alderete, J. F., Peterson, K. M. & Baseman, J. B. ( 1988; ). Affinities of Treponema pallidum for human lactoferrin and transferrin. Genitourin Med 64, 359–363.
    [Google Scholar]
  3. Aley, S. B., Cohn, Z. A. & Scott, W. A. ( 1984; ). Endocytosis in Entamoeba histolytica. Evidence for a unique non-acidified compartment. J Exp Med 160, 724–737.[CrossRef]
    [Google Scholar]
  4. Avrameas, S. & Ternynck, T. ( 1971; ). Peroxidase-labelled antibody and Fab conjugates with enhanced intra-cellular penetration. Immunochemistry 8, 1175–1179.[CrossRef]
    [Google Scholar]
  5. Batista, E., Menezes, F. L. & de Souza, W. ( 2000; ). The endocytic pathway in Entamoeba histolytica. Parasitol Res 86, 881–890.[CrossRef]
    [Google Scholar]
  6. Bradford, M. M. ( 1976; ). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein–dye binding. Anal Biochem 72, 248–254.[CrossRef]
    [Google Scholar]
  7. Britigan, B. E., Lewis, T. S., McCormick, M. L. & Wilson, M. E. ( 1998; ). Evidence for the existence of a surface receptor for ferric lactoferrin and transferrin associated with the plasma membrane of the protozoan parasite Leishmania donovani. Adv Exp Med Biol 443, 135–140.
    [Google Scholar]
  8. Bullen, J. J. ( 1981; ). The significance of iron in infection. Rev Infect Dis 3, 1127–1138.[CrossRef]
    [Google Scholar]
  9. Clague, M. J., Thorpe, C. & Jones, A. T. ( 1995; ). Phosphatidylinositol 3-kinase regulation of fluid phase endocytosis. FEBS Lett 367, 272–274.[CrossRef]
    [Google Scholar]
  10. Coppens, I., Opperdoes, F. R., Courtoy, P. J. & Baudhuin, P. ( 1987; ). Receptor-mediated endocytosis in the bloodstream form of Trypanosoma brucei. J Protozool 34, 465–473.[CrossRef]
    [Google Scholar]
  11. Diamond, L. S. ( 1957; ). The establishment of various Trichomonas of animals and man in axenic cultures. J Parasitol 43, 488–490.
    [Google Scholar]
  12. Diamond, L. S., Harlow, D. R. & Cunnick, C. C. ( 1978; ). A new medium for the axenic cultivation of Entamoeba histolytica and other Entamoeba. Trans R Soc Trop Med Hyg 72, 431–432.[CrossRef]
    [Google Scholar]
  13. Escriche, M., Burgueno, J., Ciruela, F., Canela, E. I., Mallol, J., Enrich, C., Lluis, C. & Franco, R. ( 2003; ). Ligand-induced caveolae-mediated internalization of A1 adenosine receptors: morphological evidence of endosomal sorting and receptor recycling. Exp Cell Res 285, 72–90.[CrossRef]
    [Google Scholar]
  14. Espinosa-Cantellano, M. & Martínez-Palomo, A. ( 2000; ). Pathogenesis of intestinal amebiasis: from molecules to disease. Clin Microbiol Rev 13, 318–331.[CrossRef]
    [Google Scholar]
  15. Finkelstein, R. A., Sciortino, C. V. & McIntosh, M. A. ( 1983; ). Role of iron in microbe-host interactions. Rev Infect Dis 5, Suppl. 4, S759–S777.[CrossRef]
    [Google Scholar]
  16. Giles, S. & Czuprynski, C. J. ( 2004; ). Extracellular calcium and magnesium, but not iron, are needed for optimal growth of Blastomyces dermatitidis yeast form in vitro. Clin Diagn Lab Immunol 11, 426–429.
    [Google Scholar]
  17. Gray-Owen, S. D. & Schryvers, A. B. ( 1996; ). Bacterial transferrin and lactoferrin receptors. Trends Microbiol 4, 185–191.[CrossRef]
    [Google Scholar]
  18. Heussen, C. & Dowdle, E. B. ( 1980; ). Electrophoretic analysis of plasminogen activators in polyacrylamide gels containing sodium dodecyl sulfate and copolymerized substrates. Anal Biochem 102, 196–202.[CrossRef]
    [Google Scholar]
  19. Jarosik, G. P. & Land, C. B. ( 2000; ). Identification of a human lactoferrin-binding protein in Gardnerella vaginalis. Infect Immun 68, 3443–3447.[CrossRef]
    [Google Scholar]
  20. Jarosik, G. P., Land, C. B., Duhon, P., Chandler, R., Jr & Mercer, T. ( 1998; ). Acquisition of iron by Gardnerella vaginalis. Infect Immun 66, 5041–5047.
    [Google Scholar]
  21. Kane, S. V., Sandborn, W. J., Rufo, P. A., Zholudev, A., Boone, J., Lyerly, D., Camilleri, M. & Hanauer, S. B. ( 2003; ). Fecal lactoferrin is a sensitive and specific marker in identifying intestinal inflammation. Am J Gastroenterol 98, 1309–1314.[CrossRef]
    [Google Scholar]
  22. Kimura, K., Yamaoka, M. & Kamisaka, Y. ( 2004; ). Rapid estimation of lipids in oleaginous fungi and yeasts using Nile red fluorescence. J Microbiol Methods 56, 331–338.[CrossRef]
    [Google Scholar]
  23. Klinkner, A. M., Bugelski, P. J., Waites, C. R., Louden, C., Hart, T. K. & Kerns, W. D. ( 1997; ). A novel technique for mapping the lipid composition of atherosclerotic fatty streaks by en face fluorescence microscopy. J Histochem Cytochem 45, 743–753.[CrossRef]
    [Google Scholar]
  24. Latour, N. G. & Reeves, R. E. ( 1965; ). An iron requirement for growth of Entamoeba histolytica in culture, and the antiamebal activity of 7-iodo-8-hydroxy-quinoline-5-sulphonic acid. Exp Parasitol 17, 203–209.[CrossRef]
    [Google Scholar]
  25. Laughlin, R. C., McGugan, G. C., Powell, R. R., Welter, B. H. & Temesvari, L. A. ( 2004; ). Involvement of raft-like plasma membrane domains of Entamoeba histolytica in pinocytosis and adhesion. Infect Immun 72, 5349–5357.[CrossRef]
    [Google Scholar]
  26. Lehker, M. W. & Alderete, J. F. ( 1992; ). Iron regulates growth of Trichomonas vaginalis and the expression of immunogenic trichomonad proteins. Mol Microbiol 6, 123–132.[CrossRef]
    [Google Scholar]
  27. Loo, V. G. & Lalonde, R. G. ( 1984; ). Role of iron in intracellular growth of Trypanosoma cruzi. Infect Immun 45, 726–730.
    [Google Scholar]
  28. Masson, P. L., Heremans, J. F. & Dive, C. ( 1966; ). An iron-binding protein common to many external secretions. Clin Chim Acta 14, 735–739.[CrossRef]
    [Google Scholar]
  29. Masson, P. L., Heremans, J. F. & Schonne, E. ( 1969; ). Lactoferrin, an iron-binding protein in neutrophilic leukocytes. J Exp Med 130, 643–658.[CrossRef]
    [Google Scholar]
  30. Mazurier, J. & Spik, G. ( 1980; ). Comparative study of the iron binding properties of human transferrins. I. Complete and sequential iron saturation and desaturation of the lactotransferrin. Biochim Biophys Acta 629, 399–408.[CrossRef]
    [Google Scholar]
  31. Mellman, I. ( 1996; ). Endocytosis and molecular sorting. Annu Rev Cell Dev Biol 12, 575–625.[CrossRef]
    [Google Scholar]
  32. Murray, H. W., Granger, A. M. & Teitelbaum, R. F. ( 1991; ). Gamma interferon-activated human macrophages and Toxoplasma gondii, Chlamydia psittaci, and Leishmania donovani: antimicrobial role of limiting intracellular iron. Infect Immun 59, 4684–4686.
    [Google Scholar]
  33. Okamoto, T., Schlegel, A., Scherer, P. E. & Lisanti, M. P. ( 1998; ). Caveolins, a family of scaffolding proteins for organizing ‘preassembled signaling complexes' at the plasma membrane. J Biol Chem 273, 5419–5422.[CrossRef]
    [Google Scholar]
  34. Orlandi, P. A. & Fishman, P. H. ( 1998; ). Filipin-dependent inhibition of cholera toxin internalization and activation through caveolae-like domains. J Cell Biol 141, 905–915.[CrossRef]
    [Google Scholar]
  35. Parton, R. G. ( 2004; ). Caveolae meet endosomes: a stable relationship? Dev Cell 7, 458–460.[CrossRef]
    [Google Scholar]
  36. Pelkmans, L. & Helenius, A. ( 2002; ). Endocytosis via caveolae. Traffic 3, 311–320.[CrossRef]
    [Google Scholar]
  37. Peters, P. J., Mironov, A., Jr, Peretz, D. & 8 other authors ( 2003; ). Trafficking of prion proteins through a caveolae-mediated endosomal pathway. J Cell Biol 162, 703–717.[CrossRef]
    [Google Scholar]
  38. Peterson, K. M. & Alderete, J. F. ( 1984; ). Iron uptake and increased intracellular enzyme activity follow host lactoferrin binding by Trichomonas vaginalis receptors. J Exp Med 160, 398–410.[CrossRef]
    [Google Scholar]
  39. Reyes-López, M., Serrano-Luna, J., Negrete, E., León-Sicairos, N., Guerrero, A. L. & de la Garza, M. ( 2001; ). Entamoeba histolytica: transferring binding proteins. Exp Parasitol 99, 132–140.[CrossRef]
    [Google Scholar]
  40. Rodríguez, M. H. & Jungery, M. ( 1986; ). A protein on Plasmodium falciparum-infected erythrocytes functions as a transferrin receptor. Nature 324, 388–391.[CrossRef]
    [Google Scholar]
  41. Schnitzer, J. E., Oh, P., Pinney, E. & Allard, J. ( 1994; ). Filipin-sensitive caveolae-mediated transport in endothelium: reduced transcytosis, scavenger endocytosis, and capillar permeability of select macromolecules. J Cell Biol 127, 1217–1232.[CrossRef]
    [Google Scholar]
  42. Schnitzer, J. E., Allard, J. & Oh, P. ( 1995; ). NEM inhibits transcytosis, endocytosis, and capillary permeability implication of caveolae fusion in endothelia. Am J Physiol 268, H48–55.
    [Google Scholar]
  43. Serrano-Luna, J., Arzola, J., Reyes, M. & de la Garza, M. ( 1998a; ). Iron and Entamoeba histolytica HM-1 : IMSS. In Proceedings of the 9th International Congress of Parasitology, Makuhari Chiba, Japan, pp. 827–830. Bologna, Italy: Monduzzi Ed.
  44. Serrano-Luna, J., Negrete, E., Reyes, M. & de la Garza, M. ( 1998b; ). Entamoeba histolytica HM-1 : IMSS: hemoglobin-degrading neutral cysteine proteases. Exp Parasitol 89, 71–77.[CrossRef]
    [Google Scholar]
  45. Smith, J. M. & Meerovitch, E. ( 1982; ). Specificity of iron requirements of Entamoeba histolytica in vitro. Arch Invest Med 3, 63–69.
    [Google Scholar]
  46. Spik, G., Codeville, B. & Montreuil, J. ( 1988; ). Comparative study of the primary structure of sero-, lacto- and ovotransferrin glycans from different species. Biochimie 70, 1459–1469.[CrossRef]
    [Google Scholar]
  47. Steverding, D. ( 2000; ). The transferrin receptor of Trypanosoma brucei. Parasitol Int 48, 191–198.[CrossRef]
    [Google Scholar]
  48. Stookey, I. I. ( 1970; ). Ferrozine – a new spectrophotometric reagent for iron. Anal Chem 42, 779–781.[CrossRef]
    [Google Scholar]
  49. Suchan, P., Vyoral, D., Petrak, J., Sutak, R., Rasoloson, D., Nohynkova, E., Dolezal, P. & Tachezy, J. ( 2003; ). Incorporation of iron into Tritrichomonas foetus cell compartments reveals ferredoxin as a major iron-binding protein in hydrogenosomes. Microbiology 149, 1911–1921.[CrossRef]
    [Google Scholar]
  50. Swanson, J. ( 1989; ). Fluorescein labeling of endocytic compartments. Methods Cell Biol 29, 137–151.
    [Google Scholar]
  51. Tachezy, J., Kulda, J., Bahnikova, I., Suchan, P., Razga, J. & Schrevel, J. ( 1996; ). Tritrichomonas foetus: iron acquisition from lactoferrin and transferrin. Exp Parasitol 83, 216–228.[CrossRef]
    [Google Scholar]
  52. Tachezy, J., Suchan, P., Schrevel, J. & Kulda, J. ( 1998; ). The host-protein-independent iron uptake by Tritrichomonas foetus. Exp Parasitol 90, 155–163.[CrossRef]
    [Google Scholar]
  53. Temesvari, L. A., Harris, D. N., Stanley, S. L. & Cardelli, J. ( 1999; ). Early and late endosomal compartments of Entamoeba histolytica are enriched in cysteine proteases, acid phosphatase and several Ras-related Rab GTPases. Mol Biochem Parasitol 103, 225–241.[CrossRef]
    [Google Scholar]
  54. Testa, U. ( 2002; ). Lactoferrin. In Proteins of Iron Metabolism, pp. 71–123. Edited by U. Testa. Boca Raton, FL: CRC Press.
  55. Tovar, R., Murguía-López, M. & Muñoz, M. L. ( 2000; ). Immunolocalization of clathrin during electron-dense granule secretion in Entamoeba histolytica. Arch Med Res 31, S143–S144.[CrossRef]
    [Google Scholar]
  56. Towbin, H., Staehelin, T. & Gordon, J. ( 1979; ). Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A 76, 4350–4354.[CrossRef]
    [Google Scholar]
  57. Uchida, K., Matsuse, R., Tomita, S., Sugi, K., Saitoh, O. & Ohshiba, S. ( 1994; ). Immunochemical detection of human lactoferrin in feces as a new marker for inflammatory gastrointestinal disorders and colon cancer. Clin Biochem 27, 259–264.[CrossRef]
    [Google Scholar]
  58. Van Snick, J. L., Masson, P. L. & Heremans, J. F. ( 1974; ). The involvement of lactoferrin in the hyposideremia of acute inflammation. J Exp Med 140, 1068–1084.[CrossRef]
    [Google Scholar]
  59. van Veen, H. A., Geerts, M. E. J., van Berkel, P. H. & Nuijens, J. H. ( 2002; ). Analytical cation exchange chromatography to assess the identity, purity, and N-terminal integrity of human lactoferrin. Anal Biochem 309, 60–66.[CrossRef]
    [Google Scholar]
  60. Vohra, H., Mahajan, R. C. & Ganguly, N. K. ( 1998; ). Role of serum in regulating the Entamoeba histolytica cell cycle: a flowcytometric analysis. Parasitol Res 84, 835–838.[CrossRef]
    [Google Scholar]
  61. Weinbach, E. C., Takeuchi, T., Claggett, C. E., Inohue, F., Kon, H. & Diamond, L. S. ( 1980; ). Role of iron-sulfur proteins in the electron transport system of Entamoeba histolytica. Arch Invest Med (Mex) 11 (1 Suppl.), 75–81.
    [Google Scholar]
  62. Weinberg, E. D. ( 1999; ). The role of iron in protozoan and fungal infectious diseases. J Eukaryot Microbiol 46, 231–238.[CrossRef]
    [Google Scholar]
  63. Weinberg, E. D. & Weinberg, G. A. ( 1995; ). The role of iron in infection. Curr Opin Infect Dis 8, 164–169.[CrossRef]
    [Google Scholar]
  64. Wilson, M. E., Vorhies, R. W., Andersen, K. A. & Britigan, B. E. ( 1994; ). Acquisition of iron from transferrin and lactoferrin by the protozoan Leishmania chagasi. Infect Immun 62, 3262–3269.
    [Google Scholar]
  65. Wilson, M. E., Lewis, T. S., Miller, M. A., McCormick, M. L. & Britigan, B. E. ( 2002; ). Leishmania chagasi: uptake of iron bound to lactoferrin requires an iron reductase. Exp Parasitol 100, 196–207.[CrossRef]
    [Google Scholar]
  66. Wu, X., Zhao, X., Puertollano, R., Bonifacino, J. S., Eisenberg, E. & Greene, L. E. ( 2003; ). Adaptor and clathrin exchange at the plasma membrane and trans-Golgi network. Mol Biol Cell 14, 516–528.[CrossRef]
    [Google Scholar]
  67. Young, I. T. ( 1977; ). Proof without prejudice: use of the Kolmogorov–Smirnov test for the analysis of histograms from flow systems and other sources. J Histochem Cytochem 25, 935–941.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.28121-0
Loading
/content/journal/micro/10.1099/mic.0.28121-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error