1887

Abstract

The release of the complete genome sequences of MC58 and Z2491 along with access to the sequences of FAM18 and FA1090 allowed the construction of a pan- microarray, with every gene in all four genomes represented. The microarray was used to analyse a selection of strains including all serogroups and commensal species. For each strain, genes were defined as present, divergent or absent using analysis software. Comparison of the strains identified genes that were conserved within serogroup B strains but absent from all commensal strains tested, consisting of mainly virulence-associated genes and transmissible elements. The microarray was able to distinguish between pilin genes, orthologues and serogroup-specific capsule biosynthetic genes, and to identify and genotypes. Previously described genes involved in iron response, adherence to epithelial cells, and pathogenicity were compared to the microarray analysis. The microarray data correlated with other genetic typing methods and were able to predict genotypes for uncharacterized strains and thus offer the potential for a rapid typing method. The subset of pathogen-specific genes identified represents potential drug or vaccine targets that would not eliminate commensal neisseriae and the associated naturally acquired immunity.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.28099-0
2005-09-01
2020-07-13
Loading full text...

Full text loading...

/deliver/fulltext/micro/151/9/mic1512907.html?itemId=/content/journal/micro/10.1099/mic.0.28099-0&mimeType=html&fmt=ahah

References

  1. Aho E. L., Keating A. M., McGillivray S. M. 2000; A comparative analysis of pilin genes from pathogenic and nonpathogenic Neisseria species. Microb Pathog28:81–88[CrossRef]
    [Google Scholar]
  2. Barrett S. J., Sneath P. H. 1994; A numerical phenotypic taxonomic study of the genus Neisseria . Microbiology140:2867–2891[CrossRef]
    [Google Scholar]
  3. Behr M. A., Wilson M. A., Gill W. P., Salamon H., Schoolnik G. K., Rane S., Small P. M. 1999; Comparative genomics of BCG vaccines by whole-genome DNA microarray. Science284:1520–1523[CrossRef]
    [Google Scholar]
  4. Bennett D. E., Mulhall R. M., Cafferkey M. T. 2004; PCR-based assay for detection of Neisseria meningitidis capsular serogroups 29E. X, and Z. J Clin Microbiol42:1764–1765[CrossRef]
    [Google Scholar]
  5. Borrow R., Claus H., Guiver M., Smart L., Jones D. M., Kaczmarski E. B., Frosch M., Fox A. J. 1997; Non-culture diagnosis and serogroup determination of meningococcal B and C infection by a sialyltransferase ( siaD ) PCR ELISA. Epidemiol Infect118:111–117[CrossRef]
    [Google Scholar]
  6. Bucci C., Lavitola A., Salvatore P., Del Giudice L., Massardo D. R., Bruni C. B., Alifano P. 1999; Hypermutation in pathogenic bacteria: frequent phase variation in meningococci is a phenotypic trait of a specialized mutator biotype. Mol Cell3:435–445[CrossRef]
    [Google Scholar]
  7. Dorrell N., Mangan J. A., Laing K. G.. 9 other authors 2001; Whole genome comparison of Campylobacter jejuni human isolates using a low-cost microarray reveals extensive genetic diversity. Genome Res11:1706–1715[CrossRef]
    [Google Scholar]
  8. Feavers I. M. 2000; ABC of meningococcal diversity. Nature404:451–452[CrossRef]
    [Google Scholar]
  9. Feil E., Zhou J., Maynard Smith J., Spratt B. G. 1996; A comparison of the nucleotide sequences of the adk and recA genes of pathogenic and commensal Neisseria species: evidence for extensive interspecies recombination within adk . J Mol Evol43:631–640[CrossRef]
    [Google Scholar]
  10. Grifantini R., Bartolini E., Muzzi A.. 14 other authors 2002; Previously unrecognized vaccine candidates against group B meningococcus identified by DNA microarrays. Nat Biotechnol20:914–921[CrossRef]
    [Google Scholar]
  11. Grifantini R., Sebastian S., Frigimelica E., Draghi M., Bartolini E., Muzzi A., Rappuoli R., Grandi G., Genco C. A. 2003; Identification of iron-activated and -repressed Fur-dependent genes by transcriptome analysis of Neisseria meningitidis group B. Proc Natl Acad Sci U S A100:9542–9547[CrossRef]
    [Google Scholar]
  12. Hamrick T. S., Dempsey J. A., Cohen M. S., Cannon J. G. 2001; Antigenic variation of gonococcal pilin expression in vivo : analysis of the strain FA1090 pilin repertoire and identification of the pilS gene copies recombining with pilE during experimental human infection. Microbiology147:839–849
    [Google Scholar]
  13. Hinchliffe S. J., Isherwood K. E., Stabler R. A.. 7 other authors 2003; Application of DNA microarrays to study the evolutionary genomics of Yersinia pestis and Yersinia pseudotuberculosis . Genome Res13:2018–2029[CrossRef]
    [Google Scholar]
  14. Hinds J., Witney A. A., Vass J. K. 2002a; Microarray design for bacterial genomes. Methods Microbiol33:67–82
    [Google Scholar]
  15. Hinds J., Laing K. G., Mangan J. A., Butcher P. D. 2002b; Glass slide microarrays for bacterial genomes. Methods Microbiol33:83–99
    [Google Scholar]
  16. Jolley K. A., Sun L., Moxon E. R., Maiden M. C. 2004; Dam inactivation in Neisseria meningitidis : prevalence among diverse hyperinvasive lineages. BMC Microbiol4:34 [CrossRef][CrossRef]
    [Google Scholar]
  17. Kahler C. M., Martin L. E., Tzeng Y. L., Miller Y. K., Sharkey K., Stephens D. S., Davies J. K. 2001; Polymorphisms in pilin glycosylation locus of Neisseria meningitidis expressing class II pili. Infect Immun69:3597–3604[CrossRef]
    [Google Scholar]
  18. Kim C. C., Joyce E. A., Chan K., Falkow S. 2002; Improved analytical methods for microarray-based genome-composition analysis. Genome Biol3: research0065 [CrossRef]
    [Google Scholar]
  19. Marokhazi J., Waterfield N., LeGoff G., Feil E., Stabler R., Hinds J., Fodor A., ffrench-Constant R. H. 2003; Using a DNA microarray to investigate the distribution of insect virulence factors in strains of Photorhabdus bacteria. J Bacteriol185:4648–4656[CrossRef]
    [Google Scholar]
  20. Martin P., Sun L., Hood D. W., Moxon E. R. 2004; Involvement of genes of genome maintenance in the regulation of phase variation frequencies in Neisseria meningitidis . Microbiology150:3001–3012[CrossRef]
    [Google Scholar]
  21. Parkhill J., Achtman M., James K. D.. 25 other authors 2000; Complete DNA sequence of a serogroup A strain of Neisseria meningitidis Z2491. Nature404:502–506[CrossRef]
    [Google Scholar]
  22. Pizza M., Scarlato V., Masignani V.. 43 other authors 2000; Identification of vaccine candidates against serogroup B meningococcus by whole-genome sequencing. Science287:1816–1820[CrossRef]
    [Google Scholar]
  23. Rajakumar K., Shafi J., Smith R. J.. 8 other authors 2004; Use of genome level-informed PCR as a new investigational approach for analysis of outbreak-associated Mycobacterium tuberculosis isolates. J Clin Microbiol42:1890–1896[CrossRef]
    [Google Scholar]
  24. Rokbi B., Renauld-Mongenie G., Mignon M., Danve B., Poncet D., Chabanel C., Caugant D. A., Quentin-Millet M. J. 2000; Allelic diversity of the two transferrin binding protein B gene isotypes among a collection of Neisseria meningitidis strains representative of serogroup B disease: implication for the composition of a recombinant TbpB-based vaccine. Infect Immun68:4938–4947[CrossRef]
    [Google Scholar]
  25. Rozen S., Skaletsky H. 2000; Primer3 on the WWW for general users and for biologist programmers. Methods Mol Biol132:365–386
    [Google Scholar]
  26. Rytkonen A., Albiger B., Hansson-Palo P., Kallstrom H., Olcen P., Fredlund H., Jonsson A. B. 2004; Neisseria meningitidis undergoes PilC phase variation and PilE sequence variation during invasive disease. J Infect Dis189:402–409[CrossRef]
    [Google Scholar]
  27. Salama N., Guillemin K., McDaniel T. K., Sherlock G., Tompkins L., Falkow S. 2000; A whole-genome microarray reveals genetic diversity among Helicobacter pylori strains. Proc Natl Acad Sci U S A97:14668–14673[CrossRef]
    [Google Scholar]
  28. Seiler A., Reinhardt R., Sarkari J., Caugant D. A., Achtman M. 1996; Allelic polymorphism and site-specific recombination in the opc locus of Neisseria meningitidis . Mol Microbiol19:841–856[CrossRef]
    [Google Scholar]
  29. Smith N. H., Holmes E. C., Donovan G. M., Carpenter G. A., Spratt B. G. 1999; Networks and groups within the genus Neisseria : analysis of argF , recA , rho , and 16S rRNA sequences from human Neisseria species. Mol Biol Evol16:773–783[CrossRef]
    [Google Scholar]
  30. Snyder L. A., Saunders N. J., Shafer W. M. 2001; A putatively phase variable gene ( dca ) required for natural competence in Neisseria gonorrhoeae but not Neisseria meningitidis is located within the division cell wall ( dcw ) gene cluster. J Bacteriol183:1233–1241[CrossRef]
    [Google Scholar]
  31. Spratt B. G., Zhang Q. Y., Jones D. M., Hutchison A., Brannigan J. A., Dowson C. G. 1989; Recruitment of a penicillin-binding protein gene from Neisseria flavescens during the emergence of penicillin resistance in Neisseria meningitidis . Proc Natl Acad Sci U S A86:8988–8992[CrossRef]
    [Google Scholar]
  32. Sun Y. H., Bakshi S., Chalmers R., Tang C. M. 2000; Functional genomics of Neisseria meningitidis pathogenesis. Nat Med6:1269–1273[CrossRef]
    [Google Scholar]
  33. Tettelin H., Saunders N. J., Heidelberg J.. 39 other authors 2000; Complete genome sequence of Neisseria meningitidis serogroup B strain MC58. Science287:1809–1815[CrossRef]
    [Google Scholar]
  34. Tzeng Y. L., Noble C., Stephens D. S. 2003; Genetic basis for biosynthesis of the (alpha 1→4)-linked N -acetyl-d-glucosamine 1-phosphate capsule of Neisseria meningitidis serogroup X. Infect Immun71:6712–6720[CrossRef]
    [Google Scholar]
  35. Virji M., Heckels J. E., Potts W. J., Hart C. A., Saunders J. R. 1989; Identification of epitopes recognized by monoclonal antibodies SM1 and SM2 which react with all pili of Neisseria gonorrhoeae but which differentiate between two structural classes of pili expressed by Neisseria meningitidis and the distribution of their encoding sequences in the genomes of Neisseria spp. J Gen Microbiol135:3239–3251
    [Google Scholar]
  36. Virji M., Saunders J. R., Sims G., Makepeace K., Maskell D., Ferguson D. J. 1993; Pilus-facilitated adherence of Neisseria meningitidis to human epithelial and endothelial cells: modulation of adherence phenotype occurs concurrently with changes in primary amino acid sequence and the glycosylation status of pilin. Mol Microbiol10:1013–1028[CrossRef]
    [Google Scholar]
  37. Zhou J., Spratt B. G. 1992; Sequence diversity within the argF , fbp and recA genes of natural isolates of Neisseria meningitidis : interspecies recombination within the argF gene. Mol Microbiol6:2135–2146[CrossRef]
    [Google Scholar]
  38. Zhou J., Bowler L. D., Spratt B. G. 1997; Interspecies recombination, and phylogenetic distortions, within the glutamine synthetase and shikimate dehydrogenase genes of Neisseria meningitidis and commensal Neisseria species. Mol Microbiol23:799–812[CrossRef]
    [Google Scholar]
  39. Zhu P., Morelli G., Achtman M. 1999; The opcA and ( psi ) opcB regions in Neisseria : genes, pseudogenes, deletions, insertion elements and DNA islands. Mol Microbiol33:635–650[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.28099-0
Loading
/content/journal/micro/10.1099/mic.0.28099-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error