1887

Abstract

Both the growth and respiration of are sensitive to extracts of and investigations into the anticandidal activities are now focussing on the purified constituents to determine the targets of inhibition. Of particular interest is allyl alcohol (AA), a metabolic product that accumulates after trituration of garlic cloves. Putative targets for AA were investigated by monitoring changes in intracellular responses after exposure of cells to AA or a commercially available garlic extract. Two-photon laser scanning microscopy and other techniques were used. Changes typical of oxidative stress – NADH oxidation and glutathione depletion, and increased reactive oxygen species – were observed microscopically and by flow cytometry. Known targets for AA are alcohol dehydrogenases Adh1 and 2 (in the cytosol) and Adh3 (mitochondrial), although the significant decrease in NAD(P)H after addition of AA is indicative of another mechanism of action.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.28095-0
2005-10-01
2020-08-08
Loading full text...

Full text loading...

/deliver/fulltext/micro/151/10/3257.html?itemId=/content/journal/micro/10.1099/mic.0.28095-0&mimeType=html&fmt=ahah

References

  1. Ankri S., Mirelman D. 1999; Antimicrobial properties of allicin from garlic. Microbes Infect1:125–129[CrossRef]
    [Google Scholar]
  2. Aon M. A., Cortassa S., Marban E., O'Rourke B. 2003; Synchronized whole cell oscillations in mitochondrial metabolism triggered by a local release of reactive oxygen species in cardiac myocytes. J Biol Chem278:44735–44744[CrossRef]
    [Google Scholar]
  3. Aon M. A., Cortassa S., O'Rourke B. 2004; Percolation and criticality in a mitochondrial network. Proc Natl Acad Sci U S A101:4447–4452[CrossRef]
    [Google Scholar]
  4. Bakker B. M., Bro C., Kotter P., Luttik M. A., van Dijken J. P., Pronk J. T. 2000; The mitochondrial alcohol dehydrogenase Adh3p is involved in a redox shuttle in Saccharomyces cerevisiae . J Bacteriol182:4730–4737[CrossRef]
    [Google Scholar]
  5. Banerjee S. K., Mukherjee P. K., Maulik S. K. 2003; Garlic as an antioxidant: the good, the bad and the ugly. Phytother Res17:97–106[CrossRef]
    [Google Scholar]
  6. Block E. 1985; The chemistry of garlic and onions. Sci Am252:114–119
    [Google Scholar]
  7. Block E., Putnam D., Zhao S. H. 1992; Allium chemistry: GC-MS analysis of thiosulfinates and related compounds from onion, leek, scallion, shallot, chive, and Chinese chive. J Agric Food Chem40:2431–2438[CrossRef]
    [Google Scholar]
  8. Cavallito C., Bailey J. H., Buck J. S. 1944; Allicin, the antibacterial principle of Allium sativum II. Its precursor and “essential oil” of garlic. J Am Chem Soc67:1032–1033
    [Google Scholar]
  9. Chance B. 2004; Mitochondrial NADH redox state, monitoring discovery and deployment in tissue. Methods Enzymol385:361–370
    [Google Scholar]
  10. Chance B., Sies H., Boveris A. 1979; Hydroperoxide metabolism in mammalian organs. Physiol Rev59:527–605
    [Google Scholar]
  11. Cortassa S., Aon M. A., Winslow R. L., O'Rourke B. 2004; A mitochondrial oscillator dependent on reactive oxygen species. Biophys J87:2060–2073[CrossRef]
    [Google Scholar]
  12. Cottrell S. 2003; An investigation into the antibacterial effects of Allium sativum (garlic) PhD thesis Cardiff School of Biosciences, Cardiff University;
    [Google Scholar]
  13. Davis S. R. 2005; An overview of the antifungal properties of allicin and its breakdown products – the possibility of a safe and effective antifungal prophylactic. Mycoses48:95–100[CrossRef]
    [Google Scholar]
  14. Davis S. R., Perrie R., Apitz-Castro R. 2003; The in vitro susceptibility of Scedosporium prolificans to ajoene, allitridium and a raw extract of garlic ( Allium sativum ). J Antimicrob Chemother51:593–597[CrossRef]
    [Google Scholar]
  15. Egen-Schwind C., Eckard R., Jekat F. W., Winterhoff H. 1992; Pharmacokinetics of vinyldithiins, transformation products of allicin. Planta Med58:8–13[CrossRef]
    [Google Scholar]
  16. Germain E., Auger J., Ginies C., Siess M. H., Teyssier C. 2002; In vivo metabolism of diallyl disulphide in the rat: identification of two new metabolites. Xenobiotica32:1127–1138[CrossRef]
    [Google Scholar]
  17. Ghannoum M. A. 1988; Studies on the anticandidal mode of action of Allium sativum (garlic). J Gen Microbiol134:2917–2924
    [Google Scholar]
  18. Ghannoum M. A. 1990; Inhibition of Candida adhesion to buccal epithelial cells by an aqueous extract of Allium sativum (garlic). J Appl Bacteriol68:163–169[CrossRef]
    [Google Scholar]
  19. Glascott P. A. Jr, Gilfor E., Serroni A., Farber J. L. 1996; Independent antioxidant action of vitamins E and C in cultured rat hepatocytes intoxicated with allyl alcohol. Biochem Pharmacol52:1245–1252[CrossRef]
    [Google Scholar]
  20. Gonzalez E., Fernandez M. R., Larroy C., Sola L., Pericas M. A., Pares X., Biosca J. A. 2000; Characterization of a (2 R ,3 R )-2,3-butanediol dehydrogenase as the Saccharomyces cerevisiae YAL060W gene product. Disruption and induction of the gene. J Biol Chem275:35876–35885[CrossRef]
    [Google Scholar]
  21. Harris J. C., Plummer S., Turner M. P., Lloyd D. 2000; The microaerophilic flagellate Giardia intestinalis: Allium sativum (garlic) is an effective antigiardial. Microbiology146:3119–3127
    [Google Scholar]
  22. Harris J. C., Cotrell S. L., Plummer S., Lloyd D. 2001; Antimicrobial properties of Allium sativum (garlic). Appl Microbiol Biotechnol57:282–286[CrossRef]
    [Google Scholar]
  23. Johnson M. A., Waterham H. R., Ksheminska G. P. 7 other authors 1999; Positive selection of novel peroxisome biogenesis-defective mutants of the yeast Pichia pastoris . Genetics151:1379–1391
    [Google Scholar]
  24. Koch H. 1996; Biopharmaceutics of garlic's effective compounds. In Garlic: the Science and Therapeutic Application of Allium sativum L and related species pp.213–220 Edited by Koch H. P., Lawson L. D.. Baltimore: Williams & Wilkins;
    [Google Scholar]
  25. Kosower N. S., Kosower E. M. 1987; Thiol labeling with bromobimanes. Methods Enzymol143:76–84
    [Google Scholar]
  26. Kruckerberg A. L., Dickinson J. R. 2004; Carbon metabolism. In the Metabolism and Molecular Physiology of Saccharomyces cerevisiae Edited by Schweizer J. R. D. M.. Boca Raton, FL: CRC Press;
    [Google Scholar]
  27. Laasko I., Seppanen-Laasko T., Hiltunen R., Muller B., Jansen H., Knoblock K. 1989; Volatile garlic odour components: gas phases and absorbed exhaled air analysed by headspace gas chromatography-mass spectrometry. Planta Med55:257–261[CrossRef]
    [Google Scholar]
  28. Lawson L. D. 1996; The composition and chemistry of garlic cloves and processed garlic. In Garlic: The Science and Therapeutic Application of Allium sativum and Related Species pp.37–107 Edited by Koch H. P., Lawson L. D.. Baltimore: Williams & Wilkins;
    [Google Scholar]
  29. Lemar K. M., Turner M. P., Lloyd D. 2002; Garlic ( Allium sativum ) as an anti-Candida agent: a comparison of the efficacy of fresh garlic and freeze-dried extracts. J Appl Microbiol93:398–405[CrossRef]
    [Google Scholar]
  30. Lemar K. M., Muller C. T., Plummer S., Lloyd D. 2003; Cell death mechanisms in the human opportunistic pathogen Candida albicans . J Eukaryot Microbiol50 Suppl:685–686[CrossRef]
    [Google Scholar]
  31. Loew L. M., Tuft R. A., Carrington W., Fay F. S. 1993; Imaging in five dimensions: time-dependent membrane potentials in individual mitochondria. Biophys J65:2396–2407[CrossRef]
    [Google Scholar]
  32. Mapoles J. E., Iwahashi M., Lucas D., Zimmerman B. T., Simon F. R. 1994; Acetaldehyde exposure causes growth inhibition in a Chinese hamster ovary cell line that expresses alcohol dehydrogenase. Alcohol Clin Exp Res18:632–639[CrossRef]
    [Google Scholar]
  33. Mirelman D., Monheit D., Varon S. 1987; Inhibition of growth of Entamoeba histolytica by allicin, the active principle of garlic extract ( Allium sativum ). J Infect Dis156:243–244[CrossRef]
    [Google Scholar]
  34. Miron T., Rabinkov A., Mirelman D., Wilchek M., Weiner L. 2000; The mode of action of allicin: its ready permeability through phospholipid membranes may contribute to its biological activity. Biochim Biophys Acta 1463;20–30[CrossRef]
    [Google Scholar]
  35. Nagelkerke J. F., van de Water B., Twiss I. M., Zoetewey J. P., de Bont H. J., Dogterom P., Mulder G. J. 1991; Role of microtubuli in secretion of very-low-density lipoprotein in isolated rat hepatocytes: early effects of thiol reagents. Hepatology14:1259–1268[CrossRef]
    [Google Scholar]
  36. O'Gara E. A., Hill D. J., Maslin D. J. 2000; Activities of garlic oil, garlic powder, and their diallyl constituents against Helicobacter pylori . Appl Environ Microbiol66:2269–2273[CrossRef]
    [Google Scholar]
  37. Rando R. R. 1974; Allyl alcohol-induced irreversible inhibition of yeast alcohol dehydrogenase. Biochem Pharmacol23:2328–2331[CrossRef]
    [Google Scholar]
  38. Rees L., Minney S. F., Plummer N. T., Slater J. H., Skyrme D. A. 1993; A quantitative assessment of the anti-microbial activity of garlic ( Allium sativum ). World J Microbiol Biotechnol9:303–307[CrossRef]
    [Google Scholar]
  39. Reuter R. 1994; Allium sativum and Allium ursinium : part 2– pharmacology and medical application. Phytomedicine2:73–91
    [Google Scholar]
  40. Ross Z. M., O'Gara E. A., Hill D. J., Sleightholme H. V., Maslin D. J. 2001; Antimicrobial properties of garlic oil against human enteric bacteria: evaluation of methodologies and comparisons with garlic oil sulfides and garlic powder. Appl Environ Microbiol67:475–480[CrossRef]
    [Google Scholar]
  41. Sestakova M., Adamek L., Stros F. 1976; Effect of crotonaldehyde on the metabolism of Candida utilis during the production of single cell protein from ethanol. Folia Microbiol21:444–454[CrossRef]
    [Google Scholar]
  42. Sharma V. D., Sethi M. S., Kumar A., Rarotra J. R. 1977; Antibacterial property of Allium sativum Linn. in vivo and in vitro studies. Indian J Exp Biol15:466–468
    [Google Scholar]
  43. Skyrme D. 1997; An investigation into the anti-microbial activity of Allium sativum PhD thesis University of Wales, College of Cardiff;
    [Google Scholar]
  44. Stoll A., Seebeck E. 1950; Synthesis of natural alliin. Experientia6:330
    [Google Scholar]
  45. Stoll A., Seebeck E. 1951; The specificity of the alliinase from Allium sativum . C R Hebd Seances Acad Sci232:1441–1442
    [Google Scholar]
  46. Turrens J. F., Alexandre A., Lehninger A. L. 1985; Ubisemiquinone is the electron donor for superoxide formation by complex III of heart mitochondria. Arch Biochem Biophys237:408–414[CrossRef]
    [Google Scholar]
  47. Tygstrup N., Jensen S. A., Krog B., Dalhoff K. 1997; Expression of liver functions following sub-lethal and non-lethal doses of allyl alcohol and acetaminophen in the rat. J Hepatol27:156–162[CrossRef]
    [Google Scholar]
  48. Vanden Hoek T. L., Li C., Shao Z., Schumacker P. T., Becker L. B. 1997a; Significant levels of oxidants are generated by isolated cardiomyocytes during ischemia prior to reperfusion. J Mol Cell Cardiol29:2571–2583[CrossRef]
    [Google Scholar]
  49. Vanden Hoek T. L., Shao Z., Li C., Schumacker P. T., Becker L. B. 1997b; Mitochondrial electron transport can become a significant source of oxidative injury in cardiomyocytes. J Mol Cell Cardiol29:2441–2450[CrossRef]
    [Google Scholar]
  50. Vengerovskii A. I., Sedykh I. M., Saratikov A. S. 1989; Effectiveness of hepatoprotective agents in experimental allyl alcohol poisoning. Gig Tr Prof Zabol46–47
    [Google Scholar]
  51. Wertheim T. 1844; Protozoology London: Baillière, Tindall & Cassel;
    [Google Scholar]
  52. Wills C., Phelps J. 1978; Functional mutants of yeast alcohol dehydrogenase affecting kinetics, cellular redox balance, and electrophoretic mobility. Biochem Genet16:415–432[CrossRef]
    [Google Scholar]
  53. Xie Z., Kometiani P., Liu J., Li J., Shapiro J. I., Askari A. 1999; Intracellular reactive oxygen species mediate the linkage of Na+/K+-ATPase to hypertrophy and its marker genes in cardiac myocytes. J Biol Chem274:19323–19328[CrossRef]
    [Google Scholar]
  54. Xu C., Zipfel W., Shear J. B., Williams R. M., Webb W. W. 1996; Multiphoton fluorescence excitation: new spectral windows for biological nonlinear microscopy. Proc Natl Acad Sci U S A93:10763–10768[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.28095-0
Loading
/content/journal/micro/10.1099/mic.0.28095-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error