1887

Abstract

Vectors have been developed for inducible gene expression in and in which expression of the gene of interest is driven by strong, regulated promoters from bacteriocin operons found in strains. The activity of these promoters is controlled via a two-component signal transduction system, which responds to an externally added peptide pheromone. The vectors have a modular design, permitting easy exchange of all essential elements: the inducible promoter, the cognate regulatory system, the gene of interest, the antibiotic resistance marker and the replicon. Various variants of these so-called ‘pSIP’ vectors were constructed and tested, differing in terms of the bacteriocin regulon from which the regulatory elements were derived (sakacin A or sakacin P), the regulated promoter selected from these regulons, and the replicon (derived from p256 or pSH71). Using -glucuronidase (GusA) and aminopeptidase N (PepN) as reporters, it was shown that the best vectors permitted inducible, pheromone-dose-dependent gene expression at very high levels, while displaying moderate basal activities when not induced. The most effective set-up was obtained using a vector containing the pSH71 replicon, the promoter from the sakacin P regulon, and the cognate regulatory genes, in a host. GusA levels obtained with this set-up were approximately ten times higher than the levels obtained with prototype pSIP versions, whereas PepN levels amounted to almost 50 % of total cellular protein.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.28084-0
2005-07-01
2019-08-19
Loading full text...

Full text loading...

/deliver/fulltext/micro/151/7/mic1512439.html?itemId=/content/journal/micro/10.1099/mic.0.28084-0&mimeType=html&fmt=ahah

References

  1. Alander, M., De Smet, I., Nollet, L., Verstraete, W., von Wright, A. & Mattila-Sandholm, T. ( 1999; ). The effect of probiotic strains on the microbiota of the Simulator of the Human Intestinal Microbial Ecosystem (SHIME). Int J Food Microbiol 46, 71–79.[CrossRef]
    [Google Scholar]
  2. Aukrust, T. & Blom, H. ( 1992; ). Transformation of Lactobacillus strains used in meat and vegetable fermentations. Food Res Int 25, 253–261.[CrossRef]
    [Google Scholar]
  3. Axelsson, L. & Ahrné, S. ( 2000; ). Lactic acid bacteria. In Applied Microbial Systematics, pp. 365–386. Edited by F. G. Priest & M. Goodfellow. Dordrecht, The Netherlands: Kluwer Academic Publishers.
  4. Axelsson, L. & Holck, A. ( 1995; ). The genes involved in production of and immunity to sakacin A, a bacteriocin from Lactobacillus sake Lb706. J Bacteriol 177, 2125–2137.
    [Google Scholar]
  5. Axelsson, L., Holck, A., Birkeland, S. E., Aukrust, T. & Blom, H. ( 1993; ). Cloning and nucleotide sequence of a gene from Lactobacillus sake Lb706 necessary for sakacin A production and immunity. Appl Environ Microbiol 59, 2868–2875.
    [Google Scholar]
  6. Axelsson, L., Lindstad, G. & Naterstad, K. ( 2003; ). Development of an inducible gene expression system for Lactobacillus sakei. Lett Appl Microbiol 37, 115–120.[CrossRef]
    [Google Scholar]
  7. Brurberg, M. B., Nes, I. F. & Eijsink, V. G. H. ( 1997; ). Pheromone-induced production of antimicrobial peptides in Lactobacillus. Mol Microbiol 26, 347–360.[CrossRef]
    [Google Scholar]
  8. Bryan, E. M., Bae, T., Kleerebezem, H. & Dunny, G. M. ( 2000; ). Improved vectors for nisin-controlled expression in Gram-positive bacteria. Plasmid 44, 183–190.[CrossRef]
    [Google Scholar]
  9. de Ruyter, P. G. G. A., Kuipers, O. P. & de Vos, W. M. ( 1996; ). Controlled gene expression systems for Lactococcus lactis with the food-grade inducer nisin. Appl Environ Microbiol 62, 3662–3667.
    [Google Scholar]
  10. de Vos, W. M. ( 1987; ). Gene cloning and expression in lactic streptococci. FEMS Microbiol Rev 46, 281–295.[CrossRef]
    [Google Scholar]
  11. de Vos, W. M. ( 1999; ). Safe and sustainable systems for food-grade fermentations by genetically modified lactic acid bacteria. Int Dairy J 9, 3–10.[CrossRef]
    [Google Scholar]
  12. Diep, D. B., Håvarstein, L. S. & Nes, I. F. ( 1995; ). A bacteriocin-like peptide induces bacteriocin synthesis in Lactobacillus plantarum C11. Mol Microbiol 18, 631–639.[CrossRef]
    [Google Scholar]
  13. Dudez, A. M., Chaillou, S., Hissler, L., Stentz, R., Champomier-Verges, M. C., Alpert, C. A. & Zagorec, M. ( 2002; ). Physical and genetic map of the Lactobacillus sakei 23K chromosome. Microbiology 148, 421–431.
    [Google Scholar]
  14. Eichenbaum, Z., Federle, M. J., Marra, D., de Vos, W. M., Kuipers, O. P., Kleerebezem, M. & Scott, J. R. ( 1998; ). Use of the lactococcal nisA promoter to regulate gene expression in Gram-positive bacteria: comparison of induction level and promoter strength. Appl Environ Microbiol 64, 2763–2769.
    [Google Scholar]
  15. Eijsink, V. G. H., Brurberg, M. B. & Nes, I. F. ( 1995; ). Expression system in microorganisms and its use for expressing heterologous and homologous proteins. International patent, no. WO9718316.
  16. Eijsink, V. G. H., Axelsson, L., Diep, D. B., Håvarstein, L. S., Holo, H. & Nes, I. F. ( 2002; ). Production of class II bacteriocins by lactic acid bacteria; an example of biological warfare and communication. Antonie van Leeuwenhoek 81, 639–654.[CrossRef]
    [Google Scholar]
  17. Exterkate, F. A. ( 1984; ). Location of peptidases outside and inside the menbrane of Streptococcus cremoris. Appl Environ Microbiol 47, 177–183.
    [Google Scholar]
  18. Gardner, M. N., Deane, S. M. & Rawlings, D. E. ( 2001; ). Isolation of a new broad-host-range IncQ-like plasmid, pTC-F14, from the acidophilic bacterium Acidithiobacillus caldus and analysis of the plasmid replicon. J Bacteriol 183, 3303–3309.[CrossRef]
    [Google Scholar]
  19. Gasson, M. J. ( 1983; ). Plasmid complements of Streptococcus lactis NCDO 712 and other lactic streptococci after protoplast-induced curing. J Bacteriol 154, 1–9.
    [Google Scholar]
  20. Holo, H. & Nes, I. F. ( 1989; ). High-frequency transformation, by electroporation, of Lactococcus lactis subsp. cremoris grown with glycine in osmotically stabilized media. Appl Environ Microbiol 55, 3119–3123.
    [Google Scholar]
  21. Holo, H. & Nes, I. F. ( 1995; ). Transformation of Lactococcus by electroporation. Methods Mol Biol 47, 195–199.
    [Google Scholar]
  22. Horton, R. M. & Pease, L. R. ( 1991; ). Recombination and mutagenesis of DNA sequences using PCR. In Directed Mutagenesis: a Practical Approach, pp. 217–247. Edited by M. J. McPherson. Oxford: IRL Press.
  23. Hühne, K., Axelsson, L., Holck, A. & Kröckel, L. ( 1996; ). Analysis of the sakacin P gene cluster from Lactobacillus sake Lb674 and its expression in sakacin-negative Lb. sake strains. Microbiology 142, 1437–1448.[CrossRef]
    [Google Scholar]
  24. Kahala, M. & Palva, A. ( 1999; ). The expression signals of the Lactobacillus brevis slpA gene direct efficient heterologous protein production in lactic acid bacteria. Appl Microbiol Biotechnol 51, 71–78.[CrossRef]
    [Google Scholar]
  25. Kleerebezem, M., Beerthuyzen, M. M., Vaughan, E. E., de Vos, W. M. & Kuipers, O. P. ( 1997; ). Controlled gene expression systems for lactic acid bacteria: transferable nisin-inducible expression cassettes for Lactococcus, Leuconostoc, and Lactobacillus spp. Appl Environ Microbiol 63, 4581–4584.
    [Google Scholar]
  26. Kleerebezem, M., Boekhorst, J., van Kranenburg, R. & 17 other authors ( 2003; ). Complete genome sequence of Lactobacillus plantarum WCFS1. Proc Natl Acad Sci U S A 100, 1990–1995.[CrossRef]
    [Google Scholar]
  27. Kok, J. ( 1991; ). Special-purpose vectors for lactococci. In Genetics and Molecular Biology of Streptococci, Lactococci and Enterococci III Lactococci: Molecular Biology and Biotechnology, pp. 97G–102G. Edited by M. Dunny, P. P. Clearly & L. L. McKay. Washington, DC: American Society for Microbiology.
  28. Krüger, C., Hu, Y. Z., Pan, Q. & 10 other authors ( 2002; ). In situ delivery of passive immunity by lactobacilli producing single-chain antibodies. Nat Biotechnol 20, 702–706.[CrossRef]
    [Google Scholar]
  29. Kuipers, O. P., Beerthuyzen, M. M., de Ruyter, P. G. G. A., Luesink, E. J. & de Vos, W. M. ( 1995; ). Autoregulation of nisin biosynthesis in Lactococcus lactis by signal transduction. J Biol Chem 270, 27299–27304.[CrossRef]
    [Google Scholar]
  30. Maldonado, A., Ruiz-Barba, J. L. & Jimenez-Diaz, R. ( 2003; ). Purification and genetic characterization of plantaricin NC8, a novel coculture-inducible two-peptide bacteriocin from Lactobacillus plantarum NC8. Appl Environ Microbiol 69, 383–389.[CrossRef]
    [Google Scholar]
  31. Maldonado, A., Jimenez-Diaz, R. & Ruiz-Barba, J. L. ( 2004; ). Induction of plantaricin production in Lactobacillus plantarum NC8 after coculture with specific Gram-positive bacteria is mediated by an autoinduction mechanism. J Bacteriol 186, 1556–1564.[CrossRef]
    [Google Scholar]
  32. Mathiesen, G., Namløs, H., Risøen, P. A., Axelsson, L. & Eijsink, V. G. H. ( 2004a; ). Use of bacteriocin promoters for gene expression in Lactobacillus plantarum. J Appl Microbiol 96, 819–827.[CrossRef]
    [Google Scholar]
  33. Mathiesen, G., Sørvig, E., Blatny, J., Naterstad, K., Axelsson, L. & Eijsink, V. G. H. ( 2004b; ). High-level gene expression in Lactobacillus plantarum using a pheromone-regulated bacteriocin promoter. Lett Appl Microbiol 39, 137–143.[CrossRef]
    [Google Scholar]
  34. Mathiesen, G., Huehne, K., Kroeckel, L., Axelsson, L. & Eijsink, V. G. H. ( 2005; ). Characterization of a new bacteriocin operon in sakacin P-producing Lactobacillus sakei, showing strong translational coupling between the bacteriocin and immunity genes. Appl Environ Microbiol (in press).
    [Google Scholar]
  35. Mercenier, A., Muller-Alouf, H. & Grangette, C. ( 2000; ). Lactic acid bacteria as live vaccines. Curr Issues Mol Biol 2, 17–25.
    [Google Scholar]
  36. Mercenier, A., Pavan, S. & Pot, B. ( 2003; ). Probiotics as biotherapeutic agents: present knowledge and future prospects. Curr Pharm Des 9, 175–191.[CrossRef]
    [Google Scholar]
  37. Miller, J. M. ( 1972; ). Experiments in Molecular Genetics. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  38. Møretrø, T., Naterstad, K., Wang, E., Aasen, I. M., Chaillou, S., Zagorec, M. & Axelsson, L. ( 2005; ). Sakacin P non-producing Lactobacillus sakei strains contain homologues of the sakacin P gene cluster. Res Microbiol (in press).
    [Google Scholar]
  39. Nes, I. F. & Eijsink, V. G. H. ( 1999; ). Regulation of group II peptide bacteriocin synthesis by quorum-sensing mechanisms. In Cell–Cell Signalling in Bacteria, pp. 175–192. Edited by G. M. Dunny & S. C. Winans. Washington, DC: American Society of Microbiology.
  40. Pavan, S., Hols, P., Delcour, J., Geoffroy, M. C., Grangette, C., Kleerebezem, M. & Mercenier, A. ( 2000; ). Adaptation of the nisin-controlled expression system in Lactobacillus plantarum: a tool to study in vivo biological effects. Appl Environ Microbiol 66, 4427–4432.[CrossRef]
    [Google Scholar]
  41. Pouwels, P. H., Leer, R. J. & Boersma, W. J. A. ( 1996; ). The potential of Lactobacillus as a carrier for oral immunization: development and preliminary characterization of vector systems for targeted delivery of antigens. J Biotechnol 44, 183–192.[CrossRef]
    [Google Scholar]
  42. Pouwels, P. H., Vriesema, A., Martinez, B., Tielen, F. J., Seegers, J. F. M. L., Leer, R. J., Jore, J. & Smit, E. ( 2001; ). Lactobacilli as vehicles for targeting antigens to mucosal tissues by surface exposition of foreign antigens. Methods Enzymol 336, 369–389.
    [Google Scholar]
  43. Quadri, L. E. ( 2002; ). Regulation of antimicrobial peptide production by autoinducer-mediated quorum sensing in lactic acid bacteria. Antonie van Leeuwenhoek 82, 133–145.[CrossRef]
    [Google Scholar]
  44. Risøen, P. A., Brurberg, M. B., Eijsink, V. G. H. & Nes, I. F. ( 2000; ). Functional analysis of promoters involved in quorum sensing-based regulation of bacteriocin production in Lactobacillus. Mol Microbiol 37, 619–628.
    [Google Scholar]
  45. Sambrook, J., Fritsch, E. F. & Maniatis, T. ( 1989; ). Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  46. Scheppler, L., Vogel, M., Zuercher, A. W., Zuercher, M., Germond, J. E., Miescher, S. M. & Stadler, B. M. ( 2002; ). Recombinant Lactobacillus johnsonii as a mucosal vaccine delivery vehicle. Vaccine 20, 2913–2920.[CrossRef]
    [Google Scholar]
  47. Schillinger, U. & Lücke, F. K. ( 1989; ). Antibacterial activity of Lactobacillus sake isolated from meat. Appl Environ Microbiol 55, 1901–1906.
    [Google Scholar]
  48. Schlaman, H. R., Risseeuw, E., Franke-van Dijk, M. E. & Hooykaas, P. J. ( 1994; ). Nucleotide sequence corrections of the uidA open reading frame encoding beta-glucuronidase. Gene 138, 259–260.[CrossRef]
    [Google Scholar]
  49. Schultz, M., Veltkamp, C., Dieleman, L. A., Grenther, W. B., Wyrick, P. B., Tonkonogy, S. L. & Sartor, R. B. ( 2002; ). Lactobacillus plantarum 299V in the treatment and prevention of spontaneous colitis in interleukin-10-deficient mice. Inflamm Bowel Dis 8, 71–80.[CrossRef]
    [Google Scholar]
  50. Sørvig, E., Grönqvist, S., Naterstad, K., Mathiesen, G., Eijsink, V. G. H. & Axelsson, L. ( 2003; ). Construction of vectors for inducible gene expression in Lactobacillus sakei and L. plantarum. FEMS Microbiol Lett 229, 119–126.[CrossRef]
    [Google Scholar]
  51. Sørvig, E., Skaugen, M., Naterstad, K., Eijsink, V. G. H. & Axelsson, L. ( 2005; ). Plasmid p256 from Lactobacillus plantarum represents a new type of replicon in lactic acid bacteria and contains a toxin–antitoxin-like plasmid maintenance system. Microbiology 151, 421–431.[CrossRef]
    [Google Scholar]
  52. Strøman, P. ( 1992; ). Sequence of a gene (lap) encoding a 95·3-kDa aminopeptidase from Lactococcus lactis ssp. cremoris Wg2. Gene 113, 107–112.[CrossRef]
    [Google Scholar]
  53. van de Guchte, M., Kok, J. & Venema, G. ( 1991; ). Distance-dependent translational coupling and interference in Lactococcus lactis. Mol Gen Genet 227, 65–71.[CrossRef]
    [Google Scholar]
  54. van de Guchte, M., Kok, J. & Venema, G. ( 1992; ). Gene expression in Lactococcus lactis. FEMS Microbiol Rev 8, 73–92.
    [Google Scholar]
  55. Vellanoweth, R. L. & Rabinowitz, J. C. ( 1992; ). The influence of ribosome-binding-site elements on translational efficiency in Bacillus subtilis and Escherichia coli in vivo. Mol Microbiol 6, 1105–1114.[CrossRef]
    [Google Scholar]
  56. Von Wright, A., Tynkkynen, S. & Suominen, M. ( 1987; ). Cloning of a Streptococcus lactis subsp. lactis chromosomal fragment associated with the ability to grow in milk. Appl Environ Microbiol 53, 1584–1588.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.28084-0
Loading
/content/journal/micro/10.1099/mic.0.28084-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error