1887

Abstract

Silencing of the operon by the histone-like nucleoid-structuring protein H-NS occurs at two levels. Binding of H-NS upstream of the promoter represses transcription initiation, whilst binding within the coding region is also proposed to repress transcription elongation. The latter, downstream level of repression is counteracted by the protease Lon and, thus, silencing of the operon is more effective in mutants. Transposon-mutagenesis screens for suppression of this phenotype on were performed and insertion mutations disrupting and were obtained, as well as mutations mapping upstream of the open reading frames of , and . In and mutants, promoter activity is known to be higher. Likewise, as shown here, promoter activity is increased in the and mutants, which express BglJ and LeuO constitutively. However, BglJ and LeuO have no impact on downstream repression. A mutant was isolated for the first time in the context of the operon. The mutant expresses lower levels of DnaK than the wild-type. Interestingly, in this  : : miniTn mutant, downstream repression of by H-NS is less effective, whilst upstream repression by H-NS remains unaffected. Together, the data show that the two levels of silencing by H-NS are regulated independently.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.28080-0
2005-10-01
2024-04-24
Loading full text...

Full text loading...

/deliver/fulltext/micro/151/10/3349.html?itemId=/content/journal/micro/10.1099/mic.0.28080-0&mimeType=html&fmt=ahah

References

  1. Amster-Choder O., Wright A. 1993; Transcriptional regulation of the bgl operon of Escherichia coli involves phosphotransferase system-mediated phosphorylation of a transcriptional antiterminator. J Cell Biochem 51:83–90 [CrossRef]
    [Google Scholar]
  2. Bolivar F., Rodriguez R. L., Greene P. J., Betlach M. C., Heyneker H. L., Boyer H. W. 1977; Construction and charcterization of new cloning vehicles. II. A multipurpose cloning system. Gene 2:95–113 [CrossRef]
    [Google Scholar]
  3. Brosius J., Holy A. 1984; Regulation of ribosomal RNA promoters with a synthetic lac operator. Proc Natl Acad Sci U S A 81:6929–6933 [CrossRef]
    [Google Scholar]
  4. Chen C.-C., Chou M.-Y., Huang C.-H., Majumder A., Wu H.-Y. 2004; A cis-spreading nucleoprotein filament is responsible for the gene silencing activity found in the promoter relay mechanism. J Biol Chem 280:6101–5112
    [Google Scholar]
  5. Chun K. T., Edenberg H. J., Kelley M. R., Goebl M. G. 1997; Rapid amplification of uncharacterized transposon-tagged DNA sequences from genomic DNA. Yeast 13:233–240 [CrossRef]
    [Google Scholar]
  6. Coligan J. E., Dunn B. M., Ploegh H. L., Speicher D. W., Wingfield P. T. 2005 Current Protocols in Protein Science Chichester and New York: Wiley; doi: [View Article]
    [Google Scholar]
  7. Dame R. T., Wyman C., Wurm R., Wagner R., Goosen N. 2002; Structural basis for H-NS-mediated trapping of RNA polymerase in the open initiation complex at the rrnB P1. J Biol Chem 277:2146–2150 [CrossRef]
    [Google Scholar]
  8. Diederich L., Rasmussen L. J., Messer W. 1992; New cloning vectors for integration into the lambda attachment site attB of the Escherichia coli chromosome. Plasmid 28:14–24 [CrossRef]
    [Google Scholar]
  9. Dole S., Kühn S., Schnetz K. 2002; Post-transcriptional enhancement of Escherichia coli bgl operon silencing by limitation of BglG-mediated antitermination at low transcription rates. Mol Microbiol 43:217–226 [CrossRef]
    [Google Scholar]
  10. Dole S., Klingen Y., Nagarajavel V., Schnetz K. 2004a; The protease Lon and the RNA-binding protein Hfq reduce silencing of the Escherichia coli bgl operon by H-NS. J Bacteriol 186:2708–2716 [CrossRef]
    [Google Scholar]
  11. Dole S., Nagarajavel V., Schnetz K. 2004b; The histone-like nucleoid structuring protein H-NS represses the Escherichia coli bgl operon downstream of the promoter. Mol Microbiol 52:589–600 [CrossRef]
    [Google Scholar]
  12. Dorman C. J. 2004; H-NS: a universal regulator for a dynamic genome. Nat Rev Microbiol 2:391–400 [CrossRef]
    [Google Scholar]
  13. Dougan D. A., Mogk A., Bukau B. 2002; Protein folding and degradation in bacteria: to degrade or not to degrade? That is the question. Cell Mol Life Sci 59:1607–1616 [CrossRef]
    [Google Scholar]
  14. Fang M., Majumder A., Tsai K.-J., Wu H.-Y. 2000; ppGpp-dependent leuO expression in bacteria under stress. Biochem Biophys Res Commun 276:64–70 [CrossRef]
    [Google Scholar]
  15. Giel M., Desnoyer M., Lopilato J. 1996; A mutation in a new gene, bglJ , activates the bgl operon in Escherichia coli K-12. Genetics 143:627–635
    [Google Scholar]
  16. Görke B. 2003; Regulation of the Escherichia coli antiterminator protein BglG by phosphorylation at multiple sites and evidence for transfer of phosphoryl groups between monomers. J Biol Chem 278:46219–46229 [CrossRef]
    [Google Scholar]
  17. Gottesman S. 1996; Proteases and their targets in Escherichia coli . Annu Rev Genet 30:465–506 [CrossRef]
    [Google Scholar]
  18. Hashimotoh-Gotoh T., Franklin F. C. H., Nordheim A., Timmis K. N. 1981; Specific-purpose plasmid cloning vectors. I. Low copy number, temperature-sensitive, mobilization-defective pSC101-derived containment vectors. Gene 16:227–235 [CrossRef]
    [Google Scholar]
  19. Hommais F., Krin E., Laurent-Winter C., Soutourina O., Malpertuy A., Le Caer J.-P., Danchin A., Bertin P. 2001; Large-scale monitoring of pleiotropic regulation of gene expression by the prokaryotic nucleoid-associated protein, H-NS. Mol Microbiol 40:20–36 [CrossRef]
    [Google Scholar]
  20. Johansson J., Uhlin B. E. 1999; Differential protease-mediated turnover of H-NS and StpA revealed by a mutation altering protein stability and stationary-phase survival of Escherichia coli . Proc Natl Acad Sci U S A 96:10776–10781 [CrossRef]
    [Google Scholar]
  21. Johansson J., Eriksson S., Uhlin B. E, Sondén B., Wai S. N. 2001; Heteromeric interactions among nucleoid-associated bacterial proteins: localization of StpA-stabilizing regions in H-NS of Escherichia coli . J Bacteriol 183:2343–2347 [CrossRef]
    [Google Scholar]
  22. Kajitani M., Ishihama A. 1991; Identification and sequence determination of the host factor gene for bacteriophage Q β . Nucleic Acids Res 19:1063–1066 [CrossRef]
    [Google Scholar]
  23. Kawula T. H., Lelivelt M. J. 1994; Mutations in a gene encoding a new Hsp70 suppress rapid DNA inversion and bgl activation, but not proU derepression in hns-1 mutant Escherichia coli . J Bacteriol 176:610–619
    [Google Scholar]
  24. Klauck E., Böhringer J., Hengge-Aronis R. 1997; The LysR-like regulator LeuO in Escherichia coli is involved in the translational regulation of rpoS by affecting the expression of the small regulatory DsrA-RNA. Mol Microbiol 25:559–569 [CrossRef]
    [Google Scholar]
  25. Kleckner N., Bender J., Gottesman S. 1991; Uses of transposons with emphasis on Tn 10 . Methods Enzymol 204:139–180
    [Google Scholar]
  26. Laemmli U. K. 1970; Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685 [CrossRef]
    [Google Scholar]
  27. Lease R. A., Belfort M. 2000; Riboregulation by DsrA RNA: trans -actions for global economy. Mol Microbiol 38:667–672 [CrossRef]
    [Google Scholar]
  28. Lopilato J., Wright A. 1990; Mechanisms of activation of the cryptic bgl operon of Escherichia coli K-12. In The Bacterial Chromosome pp. 435–444 Edited by Drlica K., Riley M. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  29. Majumder A., Fang M., Tsai K.-J., Ueguchi C., Mizuno T., Wu H.-Y. 2001; LeuO expression in response to starvation for branched-chain amino acids. J Biol Chem 276:19046–19051 [CrossRef]
    [Google Scholar]
  30. Miller J. H. 1992 A Short Course in Bacterial Genetics: a Laboratory Manual and Handbook for Escherichia coli and Related Bacteria Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  31. Moorthy S., Mahadevan S. 2002; Differential spectrum of mutations that activate the Escherichia coli bgl operon in an rpoS genetic background. J Bacteriol 184:4033–4038 [CrossRef]
    [Google Scholar]
  32. Mukerji M., Mahadevan S. 1997; Characterization of the negative elements involved in silencing the bgl operon of Escherichia coli : possible roles for DNA gyrase, H-NS, and CRP–cAMP in regulation. Mol Microbiol 24:617–627 [CrossRef]
    [Google Scholar]
  33. Nieto J. M., Madrid C., Prenafeta A., Miquelay E., Balsalobre C., Carrascal M., Juarez A. 2000; Expression of the hemolysin operon in Escherichia coli is modulated by a nucleoid-protein complex that includes the proteins Hha and H-NS. Mol Gen Genet 263:349–358 [CrossRef]
    [Google Scholar]
  34. Prasad I., Schaefler S. 1974; Regulation of the β -glucoside system in Escherichia coli K-12. J Bacteriol 120:638–650
    [Google Scholar]
  35. Prosseda G., Falconi M., Giangrossi M., Gualerzi C. O., Micheli G., Colonna B. 2004; The virF promoter in Shigella : more than just a curved DNA stretch. Mol Microbiol 51:523–537 [CrossRef]
    [Google Scholar]
  36. Repoila F., Gottesman S. 2003; Temperature sensing by the dsrA promoter. J Bacteriol 185:6609–6614 [CrossRef]
    [Google Scholar]
  37. Reusch R. N., Shabalin O., Crumbaugh A., Wagner R., Schröder O., Wurm R. 2002; Posttranslational modification of E. coli histone-like protein H-NS and bovine histones by short-chain poly-(R)-3-hydroxybutyrate (cPHB). FEBS Lett 527:319–322 [CrossRef]
    [Google Scholar]
  38. Reynolds A. E., Felton J., Wright A. 1981; Insertion of DNA activates the cryptic bgl operon in E. coli K12. Nature 293:625–629 [CrossRef]
    [Google Scholar]
  39. Reynolds A. E., Mahadevan S., LeGrice S. F. J., Wright A. 1986; Enhancement of bacterial gene expression by insertion elements or by mutation in a CAP-cAMP binding site. J Mol Biol 191:85–95 [CrossRef]
    [Google Scholar]
  40. Sambrook J., Russell D. 2001 Molecular Cloning: a Laboratory Manual , 3rd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  41. Schnetz K. 1995; Silencing of Escherichia coli bgl promoter by flanking sequence elements. EMBO J 14:2545–2550
    [Google Scholar]
  42. Schnetz K. 2002; Silencing of the Escherichia coli bgl operon by RpoS requires Crl. Microbiology 148:2573–2578
    [Google Scholar]
  43. Schnetz K., Rak B. 1988; Regulation of the bgl operon of Escherichia coli by transcriptional antitermination. EMBO J 7:3271–3277
    [Google Scholar]
  44. Schnetz K., Wang J. C. 1996; Silencing of the Escherichia coli bgl promoter: effects of template supercoiling and cell extracts on promoter activity in vitro . Nucleic Acids Res 24:2422–2429 [CrossRef]
    [Google Scholar]
  45. Schröder O, Wagner R. 2002; The bacterial regulatory protein H-NS – a versatile modulator of nucleic acid structures. Biol Chem 383:945–960
    [Google Scholar]
  46. Shi X., Bennett G. N. 1994; Plasmids bearing hfq and the hns -like gene stpA complement hns mutants in modulating arginine decarboxylase gene expression in Escherichia coli . J Bacteriol 176:6769–6775
    [Google Scholar]
  47. Singh J., Mukerji M., Mahadevan S. 1995; Transcriptional activation of the Escherichia coli bgl operon: negative regulation by DNA structural elements near the promoter. Mol Microbiol 17:1085–1092 [CrossRef]
    [Google Scholar]
  48. Tomoyasu T., Ogura T., Tatsuta T., Bukau B. 1998; Levels of DnaK and DnaJ provide tight control of heat shock gene expression and protein repair in Escherichia coli . Mol Microbiol 30:567–581 [CrossRef]
    [Google Scholar]
  49. Ueguchi C., Ohta T., Seto C., Suzuki T., Mizuno T. 1998; The leuO gene product has a latent ability to relieve bgl silencing in Escherichia coli . J Bacteriol 180:190–193
    [Google Scholar]
  50. Ussery D. W., Hinton J. C. D., Jordi B. J. A. M. & 7 other authors; 1994; The chromatin-associated protein H-NS. Biochimie 76:968–980 [CrossRef]
    [Google Scholar]
  51. Williams R. M., Rimsky S., Buc H. 1996; Probing the structure, function, and interactions of the Escherichia coli H-NS and StpA proteins by using dominant negative derivatives. J Bacteriol 178:4335–4343
    [Google Scholar]
  52. Wilson G. G., Young K. Y. K., Edlin G. J., Konigsberg W. 1979; High-frequency generalised transduction by bacteriophage T4. Nature 280:80–82 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.28080-0
Loading
/content/journal/micro/10.1099/mic.0.28080-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error