1887

Abstract

Many micro-organisms exist in natural habitats that are subject to severe or dramatically fluctuating environmental conditions. Such is the case for bacteria inhabiting plant surfaces, where they are exposed to UV irradiation, oxygen radicals, and large fluctuations in temperature and moisture. This study focuses on the role of RpoS, a central regulator of stationary-phase gene expression in bacterial cells, in stress response and environmental fitness of Pf-5. Strain Pf-5 is a rhizosphere-inhabiting bacterium that suppresses plant diseases caused by several plant-pathogenic fungi and oomycetes. Previous studies demonstrated that was required for osmotic and oxidative stress resistance of Pf-5. The results of this study demonstrate a role for in tolerance of Pf-5 to freezing, starvation, UV irradiation and desiccation stress. In field studies, an mutant was compromised in rhizosphere colonization of plants in dry soil, whereas similar rhizosphere populations were established by Pf-5 and an mutant in well-irrigated soils. RpoS is a key determinant in stress response and environmental fitness of the rhizosphere bacterium Pf-5.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.28077-0
2005-09-01
2019-10-23
Loading full text...

Full text loading...

/deliver/fulltext/micro/151/9/mic1513001.html?itemId=/content/journal/micro/10.1099/mic.0.28077-0&mimeType=html&fmt=ahah

References

  1. Givskov, M., Eberl, L., Moller, S., Poulsen, L. & Molin, S. ( 1994; ). Responses to nutrient starvation in Pseudomonas putida KT2442: analysis of general cross-protection, cell shape, and macromolecular content. J Bacteriol 176, 7–14.
    [Google Scholar]
  2. Heeb, S., Valverde, C., Gigot-Bonnefoy, C. & Haas, D. ( 2005; ). Role of the stress sigma factor RpoS in GacA/RsmA-controlled secondary metabolism and resistance to oxidative stress in Pseudomonas fluorescens CHA0. FEMS Microbiol Lett 243, 251–258.[CrossRef]
    [Google Scholar]
  3. Hengge-Aronis, R. ( 2002a; ). Recent insights into the general stress response regulatory network in Escherichia coli. J Mol Microbiol Biotechnol 4, 341–346.
    [Google Scholar]
  4. Hengge-Aronis, R. ( 2002b; ). Signal transduction and regulatory mechanisms involved in control of the sigma(S) (RpoS) subunit of RNA polymerase. Microbiol Mol Biol Rev 66, 373–395.[CrossRef]
    [Google Scholar]
  5. Howell, C. R. & Stipanovic, R. D. ( 1979; ). Control of Rhizoctonia solani on cotton seedlings with Pseudomonas fluorescens and with an antibiotic produced by the bacterium. Phytopathology 69, 480–482.[CrossRef]
    [Google Scholar]
  6. Howell, C. R. & Stipanovic, R. D. ( 1980; ). Suppression of Pythium ultimum induced damping-off of cotton seedlings by Pseudomonas fluorescens and its antibiotic pyoluteorin. Phytopathology 70, 712–715.[CrossRef]
    [Google Scholar]
  7. Ishihama, A. ( 2000; ). Functional modulation of Escherichia coli RNA polymerase. Annu Rev Microbiol 54, 499–518.[CrossRef]
    [Google Scholar]
  8. Jørgensen, F., Bally, M., Chapon-Herve, V., Michel, G., Lazdunski, A., Williams, P. & Stewart, G. S. A. B. ( 1999; ). RpoS-dependent stress tolerance in Pseudomonas aeruginosa. Microbiology 145, 835–844.[CrossRef]
    [Google Scholar]
  9. Kolter, R., Siegele, D. A. & Tormo, A. ( 1993; ). The stationary phase of the bacterial life cycle. Annu Rev Microbiol 47, 855–874.[CrossRef]
    [Google Scholar]
  10. Lindow, S. E., Andersen, G. & Beattie, G. A. ( 1993; ). Characteristics of insertional mutants of Pseudomonas syringae with reduced epiphytic fitness. Appl Environ Microbiol 59, 1593–1601.
    [Google Scholar]
  11. Miller, C. D., Kim, Y.-C. & Anderson, A. J. ( 2001a; ). Competitiveness in root colonization by Pseudomonas putida requires the rpoS gene. Can J Microbiol 47, 41–48.[CrossRef]
    [Google Scholar]
  12. Miller, C. D., Mortensen, W. S., Braga, G. U. L. & Anderson, A. J. ( 2001b; ). The rpoS gene in Pseudomonas syringae is important in surviving exposure to the near-UV in sunlight. Curr Microbiol 43, 374–377.[CrossRef]
    [Google Scholar]
  13. Miura, K., Inouye, S. & Nakazawa, A. ( 1998; ). The rpoS gene regulates OP2, an operon for the lower pathway of xylene catabolism on the TOL plasmid, and the stress response in Pseudomonas putida mt-2. Mol Gen Genet 259, 72–78.[CrossRef]
    [Google Scholar]
  14. Nowak-Thompson, B., Gould, S. J., Kraus, J. & Loper, J. E. ( 1994; ). Production of 2,4-diacetylphloroglucinol by the biocontrol agent Pseudomonas fluorescens Pf-5. Can J Microbiol 40, 1064–1066.[CrossRef]
    [Google Scholar]
  15. Nyström, T. ( 2004; ). Stationary-phase physiology. Annu Rev Microbiol 58, 161–181.[CrossRef]
    [Google Scholar]
  16. Péchy-Tarr, M., Bottiglieri, M., Mathys, S., Lejbølle, K. B., Schnider-Keel, U., Maurhofer, M. & Keel, C. ( 2005; ). RpoN (σ 54) controls production of antifungal compounds and biocontrol activity in Pseudomonas fluorescens CHA0. Mol Plant Microbe Interact 18, 260–272.[CrossRef]
    [Google Scholar]
  17. Pfender, W. F., Kraus, J. & Loper, J. E. ( 1993; ). A genomic region from Pseudomonas fluorescens Pf-5 required for pyrrolnitrin production and inhibition of Pyrenophora tritici-repentis in wheat straw. Phytopathology 83, 1223–1228.[CrossRef]
    [Google Scholar]
  18. Potts, M. ( 1994; ). Desiccation tolerance of prokaryotes. Microbiol Rev 58, 755–805.
    [Google Scholar]
  19. Ramos-González, M. I. & Molin, S. ( 1998; ). Cloning, sequencing, and phenotypic characterization of the rpoS gene from Pseudomonas putida KT2440. J Bacteriol 180, 3421–3431.
    [Google Scholar]
  20. Sarniguet, A., Kraus, J., Henkels, M. D., Muehlchen, A. M. & Loper, J. E. ( 1995; ). The sigma factor σ S affects antibiotic production and biological control activity of Pseudomonas fluorescens Pf-5. Proc Natl Acad Sci U S A 92, 12255–12259.[CrossRef]
    [Google Scholar]
  21. Schnider-Keel, U., Lejbølle, K. B., Baehler, E., Haas, D. & Keel, C. ( 2001; ). The sigma factor AlgU (AlgT) controls exopolysaccharide production and tolerance towards desiccation and osmotic stress in the biocontrol agent Pseudomonas fluorescens CHA0. Appl Environ Microbiol 67, 5683–5693.[CrossRef]
    [Google Scholar]
  22. Stockwell, V. O., Johnson, K. B. & Loper, J. E. ( 1998; ). Establishment of bacterial antagonists of Erwinia amylovora on pear and apple blossoms as influenced by inoculum preparation. Phytopathology 88, 506–513.[CrossRef]
    [Google Scholar]
  23. Stockwell, V. O., Johnson, K. B. & Loper, J. E. ( 2002; ). Antibiosis contributes to biological control of fire blight by Pantoea agglomerans strain Eh252 in the field. Phytopathology 92, 1202–1209.[CrossRef]
    [Google Scholar]
  24. Suh, S.-J., Silo-Suh, L., Woods, D. E., Hassett, D. J., West, S. E. H. & Ohman, D. E. ( 1999; ). Effect of rpoS mutation on the stress response and expression of virulence factors in Pseudomonas aeruginosa. J Bacteriol 181, 3890–3897.
    [Google Scholar]
  25. Tanghe, A., Van Dijck, P. & Thevelein, J. M. ( 2003; ). Determinants of freeze tolerance in microorganisms, physiological importance and biotechnological applications. Adv Appl Microbiol 53, 129–176.
    [Google Scholar]
  26. Van de Mortel, M. & Halverson, L. J. ( 2004; ). Cell envelope components contributing to biofilm growth and survival of Pseudomonas putida in low-water-content habitats. Mol Microbiol 52, 735–750.[CrossRef]
    [Google Scholar]
  27. van Veen, J. A., van Overbeek, L. S. & van Elsas, J. D. ( 1997; ). Fate and activity of microorganisms introduced into soil. Microbiol Mol Biol Rev 61, 121–135.
    [Google Scholar]
  28. Venturi, V. ( 2003; ). Control of rpoS transcription in Escherichia coli and Pseudomonas: why so different? Mol Microbiol 49, 1–9.[CrossRef]
    [Google Scholar]
  29. Whistler, C. A., Stockwell, V. O. & Loper, J. E. ( 2000; ). Lon protease influences antibiotic production and UV tolerance of Pseudomonas fluorescens Pf-5. Appl Environ Microbiol 66, 2718–2725.[CrossRef]
    [Google Scholar]
  30. Zavaglia, A. G., Tymczyszyn, E., De Antoni, G. & Disalvo, E. A. ( 2003; ). Action of trehalose on the preservation of Lactobacillus delbrueckii ssp. bulgaricus by heat and osmotic dehydration. J Appl Microbiol 95, 1315–1320.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.28077-0
Loading
/content/journal/micro/10.1099/mic.0.28077-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error