1887

Abstract

Enteropathogenic (EPEC) strains cause attaching/effacing lesions in enterocytes through the development of actin-supported pedestals at the site of bacterial adhesion. Pathogenesis requires a type III secretion system (TTSS), which injects into the host cell the intimin receptor, Tir, as well as other effectors called Esps ( secreted proteins). The genes encoding TTSS structural components and Esps are found within a pathogenicity island called the locus of enterocyte effacement (LEE). This paper describes the application of as a model to probe the functions of LEE-encoded genes. In a systematic approach, the LEE-encoded translocator and effector proteins were endogenously expressed in yeast and their effects on cell growth, cytoskeletal function and signalling pathways were studied. EspD, EspG and Map inhibited growth by depolarizing the actin cortical cytoskeleton, whereas EspF expression altered the septin cytoskeleton. Specific yeast MAP kinase pathways were activated by EspF, EspG, EspH and Map. The yeast system was used to define functional domains in Map by expressing truncated versions; it was concluded that the C-terminal region of the protein is necessary for actin disruption and toxicity, but not for mitochondrial localization. The utility of the yeast model for functional analyses of EPEC pathogenesis is discussed.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.28072-0
2005-09-01
2019-10-18
Loading full text...

Full text loading...

/deliver/fulltext/micro/151/9/mic1512933.html?itemId=/content/journal/micro/10.1099/mic.0.28072-0&mimeType=html&fmt=ahah

References

  1. Barral, Y., Mermall, V., Mooseker, M. S. & Snyder, M. ( 2000; ). Compartmentalization of the cell cortex by septins is required for maintenance of cell polarity in yeast. Mol Cell 5, 841–851.[CrossRef]
    [Google Scholar]
  2. Batchelor, M., Guignot, J., Patel, A., Cummings, N., Cleary, J., Knutton, S., Holden, D. W., Connerton, I. & Frankel, G. ( 2004; ). Involvement of the intermediate filament protein cytokeratin-18 in actin pedestal formation during EPEC infection. EMBO Rep 5, 104–110.[CrossRef]
    [Google Scholar]
  3. Cid, V. J., Adamikova, L., Cenamor, R., Molina, M., Sanchez, M. & Nombela, C. ( 1998; ). Cell integrity and morphogenesis in a budding yeast septin mutant. Microbiology 144, 3463–3474.[CrossRef]
    [Google Scholar]
  4. Cid, V. J., Adamikova, L., Sanchez, M., Molina, M. & Nombela, C. ( 2001a; ). Cell cycle control of septin ring dynamics in the budding yeast. Microbiology 147, 1437–1450.
    [Google Scholar]
  5. Cid, V. J., Shulewitz, M. J., McDonald, K. L. & Thorner, J. ( 2001b; ). Dynamic localization of the Swe1 regulator Hsl7 during the Saccharomyces cerevisiae cell cycle. Mol Biol Cell 12, 1645–1669.[CrossRef]
    [Google Scholar]
  6. Cid, V. J., Jimenez, J., Molina, M., Sanchez, M., Nombela, C. & Thorner, J. W. ( 2002; ). Orchestrating the cell cycle in yeast: sequential localization of key mitotic regulators at the spindle pole and the bud neck. Microbiology 148, 2647–2659.
    [Google Scholar]
  7. Clarke, S. C., Haigh, R. D., Freestone, P. P. & Williams, P. H. ( 2003; ). Virulence of enteropathogenic Escherichia coli, a global pathogen. Clin Microbiol Rev 16, 365–378.[CrossRef]
    [Google Scholar]
  8. Cook, J. G., Bardwell, L. & Thorner, J. ( 1997; ). Inhibitory and activating functions for MAPK Kss1 in the S. cerevisiae filamentous-growth signalling pathway. Nature 390, 85–88.[CrossRef]
    [Google Scholar]
  9. Crane, J. K., McNamara, B. P. & Donnenberg, M. S. ( 2001; ). Role of EspF in host cell death induced by enteropathogenic Escherichia coli. Cell Microbiol 3, 197–211.[CrossRef]
    [Google Scholar]
  10. Daniell, S. J., Takahashi, N., Wilson, R. & 7 other authors ( 2001; ). The filamentous type III secretion translocon of enteropathogenic Escherichia coli. Cell Microbiol 3, 865–871.[CrossRef]
    [Google Scholar]
  11. de Grado, M., Rosenberger, C. M., Gauthier, A., Vallance, B. A. & Finlay, B. B. ( 2001; ). Enteropathogenic Escherichia coli infection induces expression of the early growth response factor by activating mitogen-activated protein kinase cascades in epithelial cells. Infect Immun 69, 6217–6224.[CrossRef]
    [Google Scholar]
  12. Deng, W., Puente, J. L., Gruenheid, S. & 12 other authors ( 2004; ). Dissecting virulence: systematic and functional analyses of a pathogenicity island. Proc Natl Acad Sci U S A 101, 3597–3602.[CrossRef]
    [Google Scholar]
  13. Drubin, D. G., Mulholland, J., Zhu, Z. M. & Botstein, D. ( 1990; ). Homology of a yeast actin-binding protein to signal transduction proteins and myosin-I. Nature 343, 288–290.[CrossRef]
    [Google Scholar]
  14. Elliott, S. J., Krejany, E. O., Mellies, J. L., Robins-Browne, R. M., Sasakawa, C. & Kaper, J. B. ( 2001; ). EspG, a novel type III system-secreted protein from enteropathogenic Escherichia coli with similarities to VirA of Shigella flexneri. Infect Immun 69, 4027–4033.[CrossRef]
    [Google Scholar]
  15. Faty, M., Fink, M. & Barral, Y. ( 2002; ). Septins: a ring to part mother and daughter. Curr Genet 41, 123–131.[CrossRef]
    [Google Scholar]
  16. Gladfelter, A. S., Pringle, J. R. & Lew, D. J. ( 2001; ). The septin cortex at the yeast mother-bud neck. Curr Opin Microbiol 4, 681–689.[CrossRef]
    [Google Scholar]
  17. Gladfelter, A. S., Bose, I., Zyla, T. R., Bardes, E. S. & Lew, D. J. ( 2002; ). Septin ring assembly involves cycles of GTP loading and hydrolysis by Cdc42p. J Cell Biol 156, 315–326.[CrossRef]
    [Google Scholar]
  18. Goosney, D. L., Gruenheid, S. & Finlay, B. B. ( 2000; ). Gut feelings: enteropathogenic E. coli (EPEC) interactions with the host. Annu Rev Cell Dev Biol 16, 173–189.[CrossRef]
    [Google Scholar]
  19. Gustin, M. C., Albertyn, J., Alexander, M. & Davenport, K. ( 1998; ). MAP kinase pathways in the yeast Saccharomyces cerevisiae. Microbiol Mol Biol Rev 62, 1264–1300.
    [Google Scholar]
  20. Hardwidge, P. R., Deng, W., Vallance, B. A., Rodriguez-Escudero, I., Cid, V. J., Molina, M. & Finlay, B. B. ( 2005; ). Modulation of host cytoskeleton function by the enteropathogenic Escherichia coli and Citrobacter rodentium effector protein EspG. Infect Immun 73, 2586–2594.[CrossRef]
    [Google Scholar]
  21. Harrison, J. C., Bardes, E. S., Ohya, Y. & Lew, D. J. ( 2001; ). A role for the Pkc1p/Mpk1p kinase cascade in the morphogenesis checkpoint. Nat Cell Biol 3, 417–420.[CrossRef]
    [Google Scholar]
  22. Holtzman, D. A., Yang, S. & Drubin, D. G. ( 1993; ). Synthetic-lethal interactions identify two novel genes, SLA1 and SLA2, that control membrane cytoskeleton assembly in Saccharomyces cerevisiae. J Cell Biol 122, 635–644.[CrossRef]
    [Google Scholar]
  23. Ide, T., Laarmann, S., Greune, L., Schillers, H., Oberleithner, H. & Schmidt, M. A. ( 2001; ). Characterization of translocation pores inserted into plasma membranes by type III-secreted Esp proteins of enteropathogenic Escherichia coli. Cell Microbiol 3, 669–679.[CrossRef]
    [Google Scholar]
  24. Jepson, M. A., Pellegrin, S., Peto, L., Banbury, D. N., Leard, A. D., Mellor, H. & Kenny, B. ( 2003; ). Synergistic roles for the Map and Tir effector molecules in mediating uptake of enteropathogenic Escherichia coli (EPEC) into non-phagocytic cells. Cell Microbiol 5, 773–783.[CrossRef]
    [Google Scholar]
  25. Jimenez, J., Cid, V. J., Cenamor, R., Yuste, M., Molero, G., Nombela, C. & Sanchez, M. ( 1998; ). Morphogenesis beyond cytokinetic arrest in Saccharomyces cerevisiae. J Cell Biol 143, 1617–1634.[CrossRef]
    [Google Scholar]
  26. Johnson, D. I. & Pringle, J. R. ( 1990; ). Molecular characterization of CDC42, a Saccharomyces cerevisiae gene involved in the development of cell polarity. J Cell Biol 111, 143–152.[CrossRef]
    [Google Scholar]
  27. Kamada, Y., Qadota, H., Python, C. P., Anraku, Y., Ohya, Y. & Levin, D. E. ( 1996; ). Activation of yeast protein kinase C by Rho1 GTPase. J Biol Chem 271, 9193–9196.[CrossRef]
    [Google Scholar]
  28. Kaper, J. B. ( 1998; ). EPEC delivers the goods. Trends Microbiol 6, 169–172.[CrossRef]
    [Google Scholar]
  29. Keller, G. A., Krisans, S., Gould, S. J., Sommer, J. M., Wang, C. C., Schliebs, W., Kunau, W., Brody, S. & Subramani, S. ( 1991; ). Evolutionary conservation of a microbody targeting signal that targets proteins to peroxisomes, glyoxysomes, and glycosomes. J Cell Biol 114, 893–904.[CrossRef]
    [Google Scholar]
  30. Kenny, B. & Jepson, M. ( 2000; ). Targeting of an enteropathogenic Escherichia coli (EPEC) effector protein to host mitochondria. Cell Microbiol 2, 579–590.[CrossRef]
    [Google Scholar]
  31. Kenny, B., Lai, L. C., Finlay, B. B. & Donnenberg, M. S. ( 1996; ). EspA, a protein secreted by enteropathogenic Escherichia coli, is required to induce signals in epithelial cells. Mol Microbiol 20, 313–323.[CrossRef]
    [Google Scholar]
  32. Kenny, B., Ellis, S., Leard, A. D., Warawa, J., Mellor, H. & Jepson, M. A. ( 2002; ). Co-ordinate regulation of distinct host cell signalling pathways by multifunctional enteropathogenic Escherichia coli effector molecules. Mol Microbiol 44, 1095–1107.[CrossRef]
    [Google Scholar]
  33. Kinoshita, M. ( 2003; ). The septins. Genome Biol 4, 236.[CrossRef]
    [Google Scholar]
  34. Knutton, S., Rosenshine, I., Pallen, M. J., Nisan, I., Neves, B. C., Bain, C., Wolff, C., Dougan, G. & Frankel, G. ( 1998; ). A novel EspA-associated surface organelle of enteropathogenic Escherichia coli involved in protein translocation into epithelial cells. EMBO J 17, 2166–2176.[CrossRef]
    [Google Scholar]
  35. Kodama, T., Akeda, Y., Kono, G., Takahashi, A., Imura, K., Iida, T. & Honda, T. ( 2002; ). The EspB protein of enterohaemorrhagic Escherichia coli interacts directly with alpha-catenin. Cell Microbiol 4, 213–222.[CrossRef]
    [Google Scholar]
  36. Lesser, C. F. & Miller, S. I. ( 2001; ). Expression of microbial virulence proteins in Saccharomyces cerevisiae models mammalian infection. EMBO J 20, 1840–1849.[CrossRef]
    [Google Scholar]
  37. Levine, M. M., Bergquist, E. J., Nalin, D. R., Waterman, D. H., Hornick, R. B., Young, C. R. & Sotman, S. ( 1978; ). Escherichia coli strains that cause diarrhoea but do not produce heat-labile or heat-stable enterotoxins and are non-invasive. Lancet 1, 1119–1122.
    [Google Scholar]
  38. Lew, D. J. & Burke, D. J. ( 2003; ). The spindle assembly and spindle position checkpoints. Annu Rev Genet 37, 251–282.[CrossRef]
    [Google Scholar]
  39. Lyman, S. K. & Schekman, R. ( 1997; ). Binding of secretory precursor polypeptides to a translocon subcomplex is regulated by BiP. Cell 88, 85–96.[CrossRef]
    [Google Scholar]
  40. Martin, H., Rodriguez-Pachon, J. M., Ruiz, C., Nombela, C. & Molina, M. ( 2000; ). Regulatory mechanisms for modulation of signalling through the cell integrity Slt2-mediated pathway in Saccharomyces cerevisiae. J Biol Chem 275, 1511–1519.[CrossRef]
    [Google Scholar]
  41. Matsuzawa, T., Kuwae, A., Yoshida, S., Sasakawa, C. & Abe, A. ( 2004; ). Enteropathogenic Escherichia coli activates the RhoA signalling pathway via the stimulation of GEF-H1. EMBO J 23, 3570–3582.[CrossRef]
    [Google Scholar]
  42. McDaniel, T. K., Jarvis, K. G., Donnenberg, M. S. & Kaper, J. B. ( 1995; ). A genetic locus of enterocyte effacement conserved among diverse enterobacterial pathogens. Proc Natl Acad Sci U S A 92, 1664–1668.[CrossRef]
    [Google Scholar]
  43. McNamara, B. P. & Donnenberg, M. S. ( 1998; ). A novel proline-rich protein, EspF, is secreted from enteropathogenic Escherichia coli via the type III export pathway. FEMS Microbiol Lett 166, 71–78.[CrossRef]
    [Google Scholar]
  44. McNamara, B. P., Koutsouris, A., O'Connell, C. B., Nougayrede, J. P., Donnenberg, M. S. & Hecht, G. ( 2001; ). Translocated EspF protein from enteropathogenic Escherichia coli disrupts host intestinal barrier function. J Clin Invest 107, 621–629.[CrossRef]
    [Google Scholar]
  45. Mitchell, D. A., Marshall, T. K. & Deschenes, R. J. ( 1993; ). Vectors for the inducible overexpression of glutathione S-transferase fusion proteins in yeast. Yeast 9, 715–722.[CrossRef]
    [Google Scholar]
  46. Nagai, T., Abe, A. & Sasakawa, C. ( 2004; ). Targeting of enteropathogenic Escherichia coli EspF to host mitochondria is essential for the bacterial pathogenesis: critical role of the 16th leucine residue in EspF. J Biol Chem 280, 2998–3011.
    [Google Scholar]
  47. Naqvi, S. N., Feng, Q., Boulton, V. J., Zahn, R. & Munn, A. L. ( 2001; ). Vrp1p functions in both actomyosin ring-dependent and Hof1p-dependent pathways of cytokinesis. Traffic 2, 189–201.[CrossRef]
    [Google Scholar]
  48. Nejedlik, L., Pierfelice, T. & Geiser, J. R. ( 2004; ). Actin distribution is disrupted upon expression of Yersinia YopO/YpkA in yeast. Yeast 21, 759–768.[CrossRef]
    [Google Scholar]
  49. Nougayrede, J. P. & Donnenberg, M. S. ( 2004; ). Enteropathogenic Escherichia coli EspF is targeted to mitochondria and is required to initiate the mitochondrial death pathway. Cell Microbiol 6, 1097–1111.[CrossRef]
    [Google Scholar]
  50. Nougayrede, J. P., Fernandes, P. J. & Donnenberg, M. S. ( 2003; ). Adhesion of enteropathogenic Escherichia coli to host cells. Cell Microbiol 5, 359–372.[CrossRef]
    [Google Scholar]
  51. Pawel-Rammingen, U., Telepnev, M. V., Schmidt, G., Aktories, K., Wolf-Watz, H. & Rosqvist, R. ( 2000; ). GAP activity of the Yersinia YopE cytotoxin specifically targets the Rho pathway: a mechanism for disruption of actin microfilament structure. Mol Microbiol 36, 737–748.
    [Google Scholar]
  52. Pringle, J. R. ( 1991; ). Staining of bud scars and other cell wall chitin with calcofluor. Methods Enzymol 194, 732–735.
    [Google Scholar]
  53. Rabin, S. D. & Hauser, A. R. ( 2003; ). Pseudomonas aeruginosa ExoU, a toxin transported by the type III secretion system, kills Saccharomyces cerevisiae. Infect Immun 71, 4144–4150.[CrossRef]
    [Google Scholar]
  54. Rodriguez-Pachon, J. M., Martin, H., North, G., Rotger, R., Nombela, C. & Molina, M. ( 2002; ). A novel connection between the yeast Cdc42 GTPase and the Slt2-mediated cell integrity pathway identified through the effect of secreted Salmonella GTPase modulators. J Biol Chem 277, 27094–27102.[CrossRef]
    [Google Scholar]
  55. Sato, H., Frank, D. W., Hillard, C. J. & 9 other authors ( 2003; ). The mechanism of action of the Pseudomonas aeruginosa-encoded type III cytotoxin, ExoU. EMBO J 22, 2959–2969.[CrossRef]
    [Google Scholar]
  56. Sekiya, K., Ohishi, M., Ogino, T., Tamano, K., Sasakawa, C. & Abe, A. ( 2001; ). Supermolecular structure of the enteropathogenic Escherichia coli type III secretion system and its direct interaction with the EspA-sheath-like structure. Proc Natl Acad Sci U S A 98, 11638–11643.[CrossRef]
    [Google Scholar]
  57. Shohdy, N., Efe, J. A., Emr, S. D. & Shuman, H. A. ( 2005; ). Pathogen effector protein screening in yeast identifies Legionella factors that interfere with membrane trafficking. Proc Natl Acad Sci U S A 102, 4866–4871.[CrossRef]
    [Google Scholar]
  58. Skrzypek, E., Myers-Morales, T., Whiteheart, S. W. & Straley, S. C. ( 2003; ). Application of a Saccharomyces cerevisiae model to study requirements for trafficking of Yersinia pestis YopM in eucaryotic cells. Infect Immun 71, 937–947.[CrossRef]
    [Google Scholar]
  59. Taylor, K. A., Luther, P. W. & Donnenberg, M. S. ( 1999; ). Expression of the EspB protein of enteropathogenic Escherichia coli within HeLa cells affects stress fibers and cellular morphology. Infect Immun 67, 120–125.
    [Google Scholar]
  60. Trosky, J. E., Mukherjee, S., Burdette, D. L., Roberts, M., McCarter, L., Siegel, R. M. & Orth, K. ( 2004; ). Inhibition of MAPK signalling pathways by VopA from Vibrio parahaemolyticus. J Biol Chem 279, 51953–51957.[CrossRef]
    [Google Scholar]
  61. Tu, X., Nisan, I., Yona, C., Hanski, E. & Rosenshine, I. ( 2003; ). EspH, a new cytoskeleton-modulating effector of enterohaemorrhagic and enteropathogenic Escherichia coli. Mol Microbiol 47, 595–606.[CrossRef]
    [Google Scholar]
  62. Valdivia, R. H. ( 2004; ). Modeling the function of bacterial virulence factors in Saccharomyces cerevisiae. Eukaryot Cell 3, 827–834.[CrossRef]
    [Google Scholar]
  63. Vallance, B. A., Chan, C., Robertson, M. L. & Finlay, B. B. ( 2002; ). Enteropathogenic and enterohemorrhagic Escherichia coli infections: emerging themes in pathogenesis and prevention. Can J Gastroenterol 16, 771–778.
    [Google Scholar]
  64. Viswanathan, V. K., Lukic, S., Koutsouris, A., Miao, R., Muza, M. M. & Hecht, G. ( 2004; ). Cytokeratin 18 interacts with the enteropathogenic Escherichia coli secreted protein F (EspF) and is redistributed after infection. Cell Microbiol 6, 987–997.[CrossRef]
    [Google Scholar]
  65. Wachter, C., Beinke, C., Mattes, M. & Schmidt, M. A. ( 1999; ). Insertion of EspD into epithelial target cell membranes by infecting enteropathogenic Escherichia coli. Mol Microbiol 31, 1695–1707.[CrossRef]
    [Google Scholar]
  66. Williamson, D. H. & Fennell, D. J. ( 1979; ). Visualization of yeast mitochondrial DNA with the fluorescent stain “DAPI”. Methods Enzymol 56, 728–733.
    [Google Scholar]
  67. Yoon, S., Liu, Z., Eyobo, Y. & Orth, K. ( 2003; ). Yersinia effector YopJ inhibits yeast MAPK signalling pathways by an evolutionarily conserved mechanism. J Biol Chem 278, 2131–2135.[CrossRef]
    [Google Scholar]
  68. Yoshida, S., Katayama, E., Kuwae, A., Mimuro, H., Suzuki, T. & Sasakawa, C. ( 2002; ). Shigella deliver an effector protein to trigger host microtubule destabilization, which promotes Rac1 activity and efficient bacterial internalization. EMBO J 21, 2923–2935.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.28072-0
Loading
/content/journal/micro/10.1099/mic.0.28072-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error