contributes to invasion by controlling expression of and Free

Abstract

The ability of to invade non-phagocytic cells is important for development of a systemic listeriosis infection. The authors previously reported that a Δ strain is defective in invasion into human intestinal epithelial cells, in part, due to decreased expression of a major invasion gene, . To characterize additional invasion mechanisms under the control of , mutants were generated carrying combinations of in-frame deletions in , and . Quantitative assessment of bacterial invasion into the human enterocyte Caco-2 and hepatocyte HepG-2 cell lines demonstrated that contributes to both InlA and InlB-mediated invasion of . Previous identification of the -dependent P2 promoter upstream of the major virulence gene regulator, positive regulatory factor A (PrfA), suggested that the contributions of to expression of various virulence genes, including , could be at least partially mediated through PrfA. To test this hypothesis, relative invasion capabilities of Δ and Δ strains were compared. Exponential-phase cells of the Δ and Δ strains were similarly defective at invasion; however, stationary-phase Δ cells were significantly less invasive than stationary-phase Δ cells, suggesting that the contributions of to invasion extend beyond those mediated through PrfA in stationary-phase . TaqMan quantitative reverse-transcriptase PCRs further demonstrated that expression of and was greatly increased in a -dependent manner in stationary-phase . Together, results from this study provide strong biological evidence of a critical role for in invasion into non-phagocytic cells, primarily mediated through control of and expression.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.28070-0
2005-10-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/151/10/3215.html?itemId=/content/journal/micro/10.1099/mic.0.28070-0&mimeType=html&fmt=ahah

References

  1. Alvarez-Dominguez C., Vazquez-Boland J. A., Carrasco-Marin E., Lopez-Mato P., Leyva-Cobian F. 1997; Host cell heparan sulfate proteoglycans mediate attachment and entry of Listeria monocytogenes , and the listerial surface protein ActA is involved in heparan sulfate receptor recognition. Infect Immun 65:78–88
    [Google Scholar]
  2. Bakardjiev A. I., Stacy B. A., Fisher S. J., Portnoy D. A. 2004; Listeriosis in the pregnant guinea pig: a model of vertical transmission. Infect Immun 72:489–497 [CrossRef]
    [Google Scholar]
  3. Camilli A., Tilney L. G., Portnoy D. A. 1993; Dual roles of plcA in Listeria monocytogenes pathogenesis. Mol Microbiol 8:143–157 [CrossRef]
    [Google Scholar]
  4. Cheng L. W., Portnoy D. A. 2003; Drosophila S2 cells: an alternative infection model for Listeria monocytogenes . Cell Microbiol 5:875–885 [CrossRef]
    [Google Scholar]
  5. Conlan J. W., North R. J. 1991; Neutrophil-mediated dissolution of infected host cells as a defense strategy against a facultative intracellular bacterium. J Exp Med 174:741–744 [CrossRef]
    [Google Scholar]
  6. Dramsi S., Kocks C., Forestier C., Cossart P. 1993; Internalin-mediated invasion of epithelial cells by Listeria monocytogenes is regulated by the bacterial growth state, temperature and the pleiotropic activator prfA . Mol Microbiol 9:931–941 [CrossRef]
    [Google Scholar]
  7. Dramsi S., Biswas I., Maguin E., Braun L., Mastroeni P., Cossart P. 1995; Entry of Listeria monocytogenes into hepatocytes requires expression of InlB, a surface protein of the internalin multigene family. Mol Microbiol 16:251–261 [CrossRef]
    [Google Scholar]
  8. Dramsi S., Bourdichon F., Cabanes D., Lecuit M., Fsihi H., Cossart P. 2004; FbpA, a novel multifunctional Listeria monocytogenes virulence factor. Mol Microbiol 53:639–649 [CrossRef]
    [Google Scholar]
  9. Drevets D. A., Sawyer R. T., Potter T. A., Campbell P. A. 1995; Listeria monocytogenes infects human endothelial cells by two distinct mechanisms. Infect Immun 63:4268–4276
    [Google Scholar]
  10. Farber J. M., Peterkin P. I. 1991; Listeria monocytogenes , a food-borne pathogen. Microbiol Rev 55:476–511
    [Google Scholar]
  11. Flamm R. K., Hinrichs D. J., Thomashow M. F. 1984; Introduction of pAM beta 1 into Listeria monocytogenes by conjugation and homology between native L. monocytogenes plasmids. Infect Immun 44:157–161
    [Google Scholar]
  12. Gaillard J. L., Berche P., Mounier J., Richard S., Sansonetti P. 1987; In vitro model of penetration and intracellular growth of Listeria monocytogenes in the human enterocyte-like cell line Caco-2. Infect Immun 55:2822–2829
    [Google Scholar]
  13. Gaillard J. L., Berche P., Frehel C., Gouin E., Cossart P. 1991; Entry of L. monocytogenes into cells is mediated by internalin, a repeat protein reminiscent of surface antigens from gram-positive cocci. Cell 65:1127–1141 [CrossRef]
    [Google Scholar]
  14. Gaillard J. L., Jaubert F., Berche P. 1996; The inlAB locus mediates the entry of Listeria monocytogenes into hepatocytes in vivo. J Exp Med 183:359–369 [CrossRef]
    [Google Scholar]
  15. Hecker M., Volker U. 2001; General stress response of Bacillus subtilis and other bacteria. Adv Microb Physiol 44:35–91
    [Google Scholar]
  16. Ho S. N., Hunt H. D., Horton R. M., Pullen J. K., Pease L. R. 1989; Site-directed mutagenesis by overlap extension using the polymerase chain reaction. Gene 77:51–59 [CrossRef]
    [Google Scholar]
  17. Ireton K., Payrastre B., Chap H., Ogawa W., Sakaue H., Kasuga M., Cossart P. 1996; A role for phosphoinositide 3-kinase in bacterial invasion. Science 274:780–782 [CrossRef]
    [Google Scholar]
  18. Johansson J., Mandin P., Renzoni A., Chiaruttini C., Springer M., Cossart P. 2002; An RNA thermosensor controls expression of virulence genes in Listeria monocytogenes . Cell 110:551–561 [CrossRef]
    [Google Scholar]
  19. Kazmierczak M. J., Mithoe S. C., Boor K. J., Wiedmann M. 2003; Listeria monocytogenes σ B regulates stress response and virulence functions. J Bacteriol 185:5722–5734 [CrossRef]
    [Google Scholar]
  20. Kim H., Boor K. J., Marquis H. 2004; Listeria monocytogenes σ B contributes to invasion of human intestinal epithelial cells. Infect Immun 72:7374–7378 [CrossRef]
    [Google Scholar]
  21. Kuhn M., Goebel W. 1989; Identification of an extracellular protein of Listeria monocytogenes possibly involved in intracellular uptake by mammalian cells. Infect Immun 57:55–61
    [Google Scholar]
  22. Lecuit M., Dramsi S., Gottardi C., Fedor-Chaiken M., Gumbiner B., Cossart P. 1999; A single amino acid in E-cadherin responsible for host specificity towards the human pathogen Listeria monocytogenes . EMBO J 18:3956–3963 [CrossRef]
    [Google Scholar]
  23. Lecuit M., Vandormael-Pournin S., Lefort J., Huerre M., Gounon P., Dupuy C., Babinet C., Cossart P. 2001; A transgenic model for listeriosis: role of internalin in crossing the intestinal barrier. Science 292:1722–1725 [CrossRef]
    [Google Scholar]
  24. Lingnau A., Domann E., Hudel M., Bock M., Nichterlein T., Wehland J., Chakraborty T. 1995; Expression of the Listeria monocytogenes EGD inlA and inlB genes, whose products mediate bacterial entry into tissue culture cell lines, by PrfA-dependent and -independent mechanisms. Infect Immun 63:3896–3903
    [Google Scholar]
  25. MacDonald T. T., Carter P. B. 1980; Cell-mediated immunity to intestinal infection. Infect Immun 28:516–523
    [Google Scholar]
  26. Mengaud J., Ohayon H., Gounon P., Mege R. M., Cossart P. 1996; E-cadherin is the receptor for internalin, a surface protein required for entry of L. monocytogenes into epithelial cells. Cell 84:923–932 [CrossRef]
    [Google Scholar]
  27. Milohanic E., Glaser P., Coppee J. Y., Frangeul L., Vega Y., Vazquez-Boland J. A., Kunst F., Cossart P., Buchrieser C. 2003; Transcriptome analysis of Listeria monocytogenes identifies three groups of genes differently regulated by PrfA. Mol Microbiol 47:1613–1625 [CrossRef]
    [Google Scholar]
  28. Nadon C. A., Bowen B. M., Wiedmann M., Boor K. J. 2002; σ B contributes to PrfA-mediated virulence in Listeria monocytogenes . Infect Immun 70:3948–3952 [CrossRef]
    [Google Scholar]
  29. Nair S., Milohanic E., Berche P. 2000a; ClpC ATPase is required for cell adhesion and invasion of Listeria monocytogenes . Infect Immun 68:7061–7068 [CrossRef]
    [Google Scholar]
  30. Nair S., Derre I., Msadek T., Gaillot O., Berche P. 2000b; CtsR controls class III heat shock gene expression in the human pathogen Listeria monocytogenes . Mol Microbiol 35:800–811 [CrossRef]
    [Google Scholar]
  31. Parida S. K., Domann E., Rohde M., Muller S., Darji A., Hain T., Wehland J., Chakraborty T. 1998; Internalin B is essential for adhesion and mediates the invasion of Listeria monocytogenes into human endothelial cells. Mol Microbiol 28:81–93
    [Google Scholar]
  32. Racz P., Tenner K., Mero E. 1972; Experimental Listeria enteritis. I. An electron microscopic study of the epithelial phase in experimental listeria infection. Lab Invest 26:694–700
    [Google Scholar]
  33. Renzoni A., Klarsfeld A., Dramsi S., Cossart P. 1997; Evidence that PrfA, the pleiotropic activator of virulence genes in Listeria monocytogenes , can be present but inactive. Infect Immun 65:1515–1518
    [Google Scholar]
  34. Ripio M. T., Vazquez-Boland J. A., Vega Y., Nair S., Berche P. 1998; Evidence for expressional crosstalk between the central virulence regulator PrfA and the stress response mediator ClpC in Listeria monocytogenes . FEMS Microbiol Lett 158:45–50 [CrossRef]
    [Google Scholar]
  35. Rouquette C., Ripio M. T., Pellegrini E., Bolla J. M., Tascon R. I., Vazquez-Boland J. A., Berche P. 1996; Identification of a ClpC ATPase required for stress tolerance and in vivo survival of Listeria monocytogenes . Mol Microbiol 21:977–987 [CrossRef]
    [Google Scholar]
  36. Rouquette C., de Chastellier C., Nair S., Berche P. 1998; The ClpC ATPase of Listeria monocytogenes is a general stress protein required for virulence and promoting early bacterial escape from the phagosome of macrophages. Mol Microbiol 27:1235–1245 [CrossRef]
    [Google Scholar]
  37. Sokolovic Z., Riedel J., Wuenscher M., Goebel W. 1993; Surface-associated, PrfA-regulated proteins of Listeria monocytogenes synthesized under stress conditions. Mol Microbiol 8:219–227 [CrossRef]
    [Google Scholar]
  38. Sue D., Fink D., Wiedmann M., Boor K. J. 2004; σ B-dependent gene induction and expression in Listeria monocytogenes during osmotic and acid stress conditions simulating the intestinal environment. Microbiology 150:3843–3855 [CrossRef]
    [Google Scholar]
  39. Vazquez-Boland J. A., Kuhn M., Berche P., Chakraborty T., Dominguez-Bernal G., Goebel W., Gonzalez-Zorn B., Wehland J., Kreft J. 2001; Listeria pathogenesis and molecular virulence determinants. Clin Microbiol Rev 14:584–640 [CrossRef]
    [Google Scholar]
  40. Wiedmann M., Arvik T. J., Hurley R. J., Boor K. J. 1998; General stress transcription factor σ B and its role in acid tolerance and virulence of Listeria monocytogenes . J Bacteriol 180:3650–3656
    [Google Scholar]
  41. Wuenscher M. D., Kohler S., Bubert A., Gerike U., Goebel W. 1993; The iap gene of Listeria monocytogenes is essential for cell viability, and its gene product, p60, has bacteriolytic activity. J Bacteriol 175:3491–3501
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.28070-0
Loading
/content/journal/micro/10.1099/mic.0.28070-0
Loading

Data & Media loading...

Most cited Most Cited RSS feed