1887

Abstract

The ability of to invade non-phagocytic cells is important for development of a systemic listeriosis infection. The authors previously reported that a Δ strain is defective in invasion into human intestinal epithelial cells, in part, due to decreased expression of a major invasion gene, . To characterize additional invasion mechanisms under the control of , mutants were generated carrying combinations of in-frame deletions in , and . Quantitative assessment of bacterial invasion into the human enterocyte Caco-2 and hepatocyte HepG-2 cell lines demonstrated that contributes to both InlA and InlB-mediated invasion of . Previous identification of the -dependent P2 promoter upstream of the major virulence gene regulator, positive regulatory factor A (PrfA), suggested that the contributions of to expression of various virulence genes, including , could be at least partially mediated through PrfA. To test this hypothesis, relative invasion capabilities of Δ and Δ strains were compared. Exponential-phase cells of the Δ and Δ strains were similarly defective at invasion; however, stationary-phase Δ cells were significantly less invasive than stationary-phase Δ cells, suggesting that the contributions of to invasion extend beyond those mediated through PrfA in stationary-phase . TaqMan quantitative reverse-transcriptase PCRs further demonstrated that expression of and was greatly increased in a -dependent manner in stationary-phase . Together, results from this study provide strong biological evidence of a critical role for in invasion into non-phagocytic cells, primarily mediated through control of and expression.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.28070-0
2005-10-01
2019-11-18
Loading full text...

Full text loading...

/deliver/fulltext/micro/151/10/3215.html?itemId=/content/journal/micro/10.1099/mic.0.28070-0&mimeType=html&fmt=ahah

References

  1. Alvarez-Dominguez, C., Vazquez-Boland, J. A., Carrasco-Marin, E., Lopez-Mato, P. & Leyva-Cobian, F. ( 1997; ). Host cell heparan sulfate proteoglycans mediate attachment and entry of Listeria monocytogenes, and the listerial surface protein ActA is involved in heparan sulfate receptor recognition. Infect Immun 65, 78–88.
    [Google Scholar]
  2. Bakardjiev, A. I., Stacy, B. A., Fisher, S. J. & Portnoy, D. A. ( 2004; ). Listeriosis in the pregnant guinea pig: a model of vertical transmission. Infect Immun 72, 489–497.[CrossRef]
    [Google Scholar]
  3. Camilli, A., Tilney, L. G. & Portnoy, D. A. ( 1993; ). Dual roles of plcA in Listeria monocytogenes pathogenesis. Mol Microbiol 8, 143–157.[CrossRef]
    [Google Scholar]
  4. Cheng, L. W. & Portnoy, D. A. ( 2003; ). Drosophila S2 cells: an alternative infection model for Listeria monocytogenes. Cell Microbiol 5, 875–885.[CrossRef]
    [Google Scholar]
  5. Conlan, J. W. & North, R. J. ( 1991; ). Neutrophil-mediated dissolution of infected host cells as a defense strategy against a facultative intracellular bacterium. J Exp Med 174, 741–744.[CrossRef]
    [Google Scholar]
  6. Dramsi, S., Kocks, C., Forestier, C. & Cossart, P. ( 1993; ). Internalin-mediated invasion of epithelial cells by Listeria monocytogenes is regulated by the bacterial growth state, temperature and the pleiotropic activator prfA. Mol Microbiol 9, 931–941.[CrossRef]
    [Google Scholar]
  7. Dramsi, S., Biswas, I., Maguin, E., Braun, L., Mastroeni, P. & Cossart, P. ( 1995; ). Entry of Listeria monocytogenes into hepatocytes requires expression of InlB, a surface protein of the internalin multigene family. Mol Microbiol 16, 251–261.[CrossRef]
    [Google Scholar]
  8. Dramsi, S., Bourdichon, F., Cabanes, D., Lecuit, M., Fsihi, H. & Cossart, P. ( 2004; ). FbpA, a novel multifunctional Listeria monocytogenes virulence factor. Mol Microbiol 53, 639–649.[CrossRef]
    [Google Scholar]
  9. Drevets, D. A., Sawyer, R. T., Potter, T. A. & Campbell, P. A. ( 1995; ). Listeria monocytogenes infects human endothelial cells by two distinct mechanisms. Infect Immun 63, 4268–4276.
    [Google Scholar]
  10. Farber, J. M. & Peterkin, P. I. ( 1991; ). Listeria monocytogenes, a food-borne pathogen. Microbiol Rev 55, 476–511.
    [Google Scholar]
  11. Flamm, R. K., Hinrichs, D. J. & Thomashow, M. F. ( 1984; ). Introduction of pAM beta 1 into Listeria monocytogenes by conjugation and homology between native L. monocytogenes plasmids. Infect Immun 44, 157–161.
    [Google Scholar]
  12. Gaillard, J. L., Berche, P., Mounier, J., Richard, S. & Sansonetti, P. ( 1987; ). In vitro model of penetration and intracellular growth of Listeria monocytogenes in the human enterocyte-like cell line Caco-2. Infect Immun 55, 2822–2829.
    [Google Scholar]
  13. Gaillard, J. L., Berche, P., Frehel, C., Gouin, E. & Cossart, P. ( 1991; ). Entry of L. monocytogenes into cells is mediated by internalin, a repeat protein reminiscent of surface antigens from gram-positive cocci. Cell 65, 1127–1141.[CrossRef]
    [Google Scholar]
  14. Gaillard, J. L., Jaubert, F. & Berche, P. ( 1996; ). The inlAB locus mediates the entry of Listeria monocytogenes into hepatocytes in vivo. J Exp Med 183, 359–369.[CrossRef]
    [Google Scholar]
  15. Hecker, M. & Volker, U. ( 2001; ). General stress response of Bacillus subtilis and other bacteria. Adv Microb Physiol 44, 35–91.
    [Google Scholar]
  16. Ho, S. N., Hunt, H. D., Horton, R. M., Pullen, J. K. & Pease, L. R. ( 1989; ). Site-directed mutagenesis by overlap extension using the polymerase chain reaction. Gene 77, 51–59.[CrossRef]
    [Google Scholar]
  17. Ireton, K., Payrastre, B., Chap, H., Ogawa, W., Sakaue, H., Kasuga, M. & Cossart, P. ( 1996; ). A role for phosphoinositide 3-kinase in bacterial invasion. Science 274, 780–782.[CrossRef]
    [Google Scholar]
  18. Johansson, J., Mandin, P., Renzoni, A., Chiaruttini, C., Springer, M. & Cossart, P. ( 2002; ). An RNA thermosensor controls expression of virulence genes in Listeria monocytogenes. Cell 110, 551–561.[CrossRef]
    [Google Scholar]
  19. Kazmierczak, M. J., Mithoe, S. C., Boor, K. J. & Wiedmann, M. ( 2003; ). Listeria monocytogenes σ B regulates stress response and virulence functions. J Bacteriol 185, 5722–5734.[CrossRef]
    [Google Scholar]
  20. Kim, H., Boor, K. J. & Marquis, H. ( 2004; ). Listeria monocytogenes σ B contributes to invasion of human intestinal epithelial cells. Infect Immun 72, 7374–7378.[CrossRef]
    [Google Scholar]
  21. Kuhn, M. & Goebel, W. ( 1989; ). Identification of an extracellular protein of Listeria monocytogenes possibly involved in intracellular uptake by mammalian cells. Infect Immun 57, 55–61.
    [Google Scholar]
  22. Lecuit, M., Dramsi, S., Gottardi, C., Fedor-Chaiken, M., Gumbiner, B. & Cossart, P. ( 1999; ). A single amino acid in E-cadherin responsible for host specificity towards the human pathogen Listeria monocytogenes. EMBO J 18, 3956–3963.[CrossRef]
    [Google Scholar]
  23. Lecuit, M., Vandormael-Pournin, S., Lefort, J., Huerre, M., Gounon, P., Dupuy, C., Babinet, C. & Cossart, P. ( 2001; ). A transgenic model for listeriosis: role of internalin in crossing the intestinal barrier. Science 292, 1722–1725.[CrossRef]
    [Google Scholar]
  24. Lingnau, A., Domann, E., Hudel, M., Bock, M., Nichterlein, T., Wehland, J. & Chakraborty, T. ( 1995; ). Expression of the Listeria monocytogenes EGD inlA and inlB genes, whose products mediate bacterial entry into tissue culture cell lines, by PrfA-dependent and -independent mechanisms. Infect Immun 63, 3896–3903.
    [Google Scholar]
  25. MacDonald, T. T. & Carter, P. B. ( 1980; ). Cell-mediated immunity to intestinal infection. Infect Immun 28, 516–523.
    [Google Scholar]
  26. Mengaud, J., Ohayon, H., Gounon, P., Mege, R. M. & Cossart, P. ( 1996; ). E-cadherin is the receptor for internalin, a surface protein required for entry of L. monocytogenes into epithelial cells. Cell 84, 923–932.[CrossRef]
    [Google Scholar]
  27. Milohanic, E., Glaser, P., Coppee, J. Y., Frangeul, L., Vega, Y., Vazquez-Boland, J. A., Kunst, F., Cossart, P. & Buchrieser, C. ( 2003; ). Transcriptome analysis of Listeria monocytogenes identifies three groups of genes differently regulated by PrfA. Mol Microbiol 47, 1613–1625.[CrossRef]
    [Google Scholar]
  28. Nadon, C. A., Bowen, B. M., Wiedmann, M. & Boor, K. J. ( 2002; ). σ B contributes to PrfA-mediated virulence in Listeria monocytogenes. Infect Immun 70, 3948–3952.[CrossRef]
    [Google Scholar]
  29. Nair, S., Milohanic, E. & Berche, P. ( 2000a; ). ClpC ATPase is required for cell adhesion and invasion of Listeria monocytogenes. Infect Immun 68, 7061–7068.[CrossRef]
    [Google Scholar]
  30. Nair, S., Derre, I., Msadek, T., Gaillot, O. & Berche, P. ( 2000b; ). CtsR controls class III heat shock gene expression in the human pathogen Listeria monocytogenes. Mol Microbiol 35, 800–811.[CrossRef]
    [Google Scholar]
  31. Parida, S. K., Domann, E., Rohde, M., Muller, S., Darji, A., Hain, T., Wehland, J. & Chakraborty, T. ( 1998; ). Internalin B is essential for adhesion and mediates the invasion of Listeria monocytogenes into human endothelial cells. Mol Microbiol 28, 81–93.
    [Google Scholar]
  32. Racz, P., Tenner, K. & Mero, E. ( 1972; ). Experimental Listeria enteritis. I. An electron microscopic study of the epithelial phase in experimental listeria infection. Lab Invest 26, 694–700.
    [Google Scholar]
  33. Renzoni, A., Klarsfeld, A., Dramsi, S. & Cossart, P. ( 1997; ). Evidence that PrfA, the pleiotropic activator of virulence genes in Listeria monocytogenes, can be present but inactive. Infect Immun 65, 1515–1518.
    [Google Scholar]
  34. Ripio, M. T., Vazquez-Boland, J. A., Vega, Y., Nair, S. & Berche, P. ( 1998; ). Evidence for expressional crosstalk between the central virulence regulator PrfA and the stress response mediator ClpC in Listeria monocytogenes. FEMS Microbiol Lett 158, 45–50.[CrossRef]
    [Google Scholar]
  35. Rouquette, C., Ripio, M. T., Pellegrini, E., Bolla, J. M., Tascon, R. I., Vazquez-Boland, J. A. & Berche, P. ( 1996; ). Identification of a ClpC ATPase required for stress tolerance and in vivo survival of Listeria monocytogenes. Mol Microbiol 21, 977–987.[CrossRef]
    [Google Scholar]
  36. Rouquette, C., de Chastellier, C., Nair, S. & Berche, P. ( 1998; ). The ClpC ATPase of Listeria monocytogenes is a general stress protein required for virulence and promoting early bacterial escape from the phagosome of macrophages. Mol Microbiol 27, 1235–1245.[CrossRef]
    [Google Scholar]
  37. Sokolovic, Z., Riedel, J., Wuenscher, M. & Goebel, W. ( 1993; ). Surface-associated, PrfA-regulated proteins of Listeria monocytogenes synthesized under stress conditions. Mol Microbiol 8, 219–227.[CrossRef]
    [Google Scholar]
  38. Sue, D., Fink, D., Wiedmann, M. & Boor, K. J. ( 2004; ). σ B-dependent gene induction and expression in Listeria monocytogenes during osmotic and acid stress conditions simulating the intestinal environment. Microbiology 150, 3843–3855.[CrossRef]
    [Google Scholar]
  39. Vazquez-Boland, J. A., Kuhn, M., Berche, P., Chakraborty, T., Dominguez-Bernal, G., Goebel, W., Gonzalez-Zorn, B., Wehland, J. & Kreft, J. ( 2001; ). Listeria pathogenesis and molecular virulence determinants. Clin Microbiol Rev 14, 584–640.[CrossRef]
    [Google Scholar]
  40. Wiedmann, M., Arvik, T. J., Hurley, R. J. & Boor, K. J. ( 1998; ). General stress transcription factor σ B and its role in acid tolerance and virulence of Listeria monocytogenes. J Bacteriol 180, 3650–3656.
    [Google Scholar]
  41. Wuenscher, M. D., Kohler, S., Bubert, A., Gerike, U. & Goebel, W. ( 1993; ). The iap gene of Listeria monocytogenes is essential for cell viability, and its gene product, p60, has bacteriolytic activity. J Bacteriol 175, 3491–3501.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.28070-0
Loading
/content/journal/micro/10.1099/mic.0.28070-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error