1887

Abstract

Enterohaemorrhagic O157 : H7 is a human pathogen that causes no apparent disease in cattle, its primary reservoir host. Recent research has demonstrated that O157 : H7 predominately colonizes the distal few centimetres of the bovine rectum, and in this study, the operon encoding a type III secretion system translocon and associated proteins was shown to be essential for colonization. A deletion mutant of failed to colonize cattle, in contrast to a co-inoculated strain containing a chromosomal complement of the operon, therefore fulfilling ‘molecular’ Koch's postulates for this virulence determinant. In addition, attaching and effacing (A/E) lesions were detectable in O157 : H7 microcolonies from the terminal rectum of both naturally and experimentally colonized cattle when examined by transmission electron microscopy. This study proves that type III secretion is required for colonization of cattle by O157 : H7, and that A/E lesion formation occurs at the bovine terminal rectum within O157 : H7 microcolonies. The research confirms the value of using type III secreted proteins as vaccine candidates in cattle.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.28060-0
2005-08-01
2019-11-12
Loading full text...

Full text loading...

/deliver/fulltext/micro/151/8/mic1512773.html?itemId=/content/journal/micro/10.1099/mic.0.28060-0&mimeType=html&fmt=ahah

References

  1. Besser, R. E., Griffin, P. M. & Slutsker, L. ( 1999; ). Escherichia coli O157 : H7 gastroenteritis and the hemolytic uremic syndrome: an emerging infectious disease. Annu Rev Med 50, 355–367.[CrossRef]
    [Google Scholar]
  2. Blomfield, I. C., Vaughn, V., Rest, R. F. & Eisenstein, B. I. ( 1991; ). Allelic exchange in Escherichia coli using the Bacillus subtilis sacB gene and a temperature-sensitive psc101 replicon. Mol Microbiol 5, 1447–1457.[CrossRef]
    [Google Scholar]
  3. Borczyk, A. A., Karmali, M. A., Lior, H. & Duncan, L. M. C. ( 1987; ). Bovine reservoir for verotoxin-producing Escherichia coli O157 : H7. Lancet 1(8524), 98.
    [Google Scholar]
  4. Cookson, A. L. & Woodward, M. J. ( 2003; ). The role of intimin in the adherence of enterohaemorrhagic Escherichia coli (EHEC) O157 : H7 to HEp-2 tissue culture cells and to bovine gut explant tissues. Int J Med Microbiol 292, 547–553.[CrossRef]
    [Google Scholar]
  5. Cornick, N. A., Booher, S. L. & Moon, H. W. ( 2002; ). Intimin facilitates colonization by Escherichia coli O157 : H7 in adult ruminants. Infect Immun 70, 2704–2707.[CrossRef]
    [Google Scholar]
  6. Crane, J. K., McNamara, B. P. & Donnenberg, M. S. ( 2001; ). Role of EspF in host cell death induced by enteropathogenic Escherichia coli. Cell Microbiol 3, 197–211.[CrossRef]
    [Google Scholar]
  7. Dean-Nystrom, E. A., Bosworth, B. T., Cray, W. C. & Moon, H. W. ( 1997; ). Pathogenicity of Escherichia coli O157 : H7 in the intestines of neonatal calves. Infect Immun 65, 1842–1848.
    [Google Scholar]
  8. Dean-Nystrom, E. A., Bosworth, B. T., Moon, H. W. & O'Brien, A. D. ( 1998; ). Escherichia coli O157 : H7 requires intimin for enteropathogenicity in calves. Infect Immun 66, 4560–4563.
    [Google Scholar]
  9. Dean-Nystrom, E. A., Bosworth, B. T. & Moon, H. W. ( 1999; ). Pathogenesis of Escherichia coli O157 : H7 in weaned calves. Adv Exp Med Biol 473, 173–177.
    [Google Scholar]
  10. Dean-Nystrom, E. A., Pohlenz, J. F. L., Moon, H. W. & O'Brien, A. D. ( 2000; ). Escherichia coli O157 : H7 causes more-severe systemic disease in suckling piglets than in colostrum-deprived neonatal piglets. Infect Immun 68, 2356–2358.[CrossRef]
    [Google Scholar]
  11. Dean-Nystrom, E. A., Gansheroff, L. J., Mills, M., Moon, H. W. & O'Brien, A. D. ( 2002; ). Vaccination of pregnant dams with intimin (O157) protects suckling piglets from Escherichia coli O157 : H7 infection. Infect Immun 70, 2414–2418.[CrossRef]
    [Google Scholar]
  12. Dziva, F., van Diemen, P. M., Stevens, M. P., Smith, A. J. & Wallis, T. S. ( 2004; ). Identification of Escherichia coli O157 : H7 genes influencing colonization of the bovine gastrointestinal tract using signature-tagged mutagenesis. Microbiology 150, 3631–3645.[CrossRef]
    [Google Scholar]
  13. Elliott, S. J., Wainwright, L. A., McDaniel, T. K., Jarvis, K. G., Deng, Y. K., Lai, L. C., McNamara, B. P., Donnenberg, M. S. & Kaper, J. B. ( 1998; ). The complete sequence of the locus of enterocyte effacement (LEE) from enteropathogenic Escherichia coli E2348/69. Mol Microbiol 28, 1–4.
    [Google Scholar]
  14. Elliott, S. J., Krejany, E. O., Mellies, J. L., Robins-Browne, R. M., Sasakawa, C. & Kaper, J. B. ( 2001; ). EspG, a novel type III system-secreted protein from enteropathogenic Escherichia coli with similarities to VirA of Shigella flexneri. Infect Immun 69, 4027–4033.[CrossRef]
    [Google Scholar]
  15. Falkow, S. ( 2004; ). Molecular Koch's postulates applied to bacterial pathogenicity – a personal recollection 15 years later. Nat Rev Microbiol 2, 67–72.[CrossRef]
    [Google Scholar]
  16. Frankel, G., Phillips, A. D., Rosenshine, I., Dougan, G., Kaper, J. B. & Knutton, S. ( 1998; ). Enteropathogenic and enterohaemorrhagic Escherichia coli: more subversive elements. Mol Microbiol 30, 911–921.[CrossRef]
    [Google Scholar]
  17. Garmendia, J., Phillips, A. D., Carlier, M. F. & 8 other authors ( 2004; ). TccP is an enterohaemorrhagic Escherichia coli O157 : H7 type III effector protein that couples Tir to the actin-cytoskeleton. Cell Microbiol 6, 1167–1183.[CrossRef]
    [Google Scholar]
  18. Gruenheid, S., Sekirov, I., Thomas, N. A. & 10 other authors ( 2004; ). Identification and characterization of NleA, a non-LEE-encoded type III translocated virulence factor of enterohaemorrhagic Escherichia coli O157 : H7. Mol Microbiol 51, 1233–1249.[CrossRef]
    [Google Scholar]
  19. Hamilton, C. M., Aldea, M., Washburn, B. K., Babitzke, P. & Kushner, S. R. ( 1989; ). New method for generating deletions and gene replacements in Escherichia coli. J Bacteriol 171, 4617–4622.
    [Google Scholar]
  20. Hueck, J. ( 1998; ). Type III protein secretion systems in bacterial pathogens of animals and plants. Microbiol Mol Biol Rev 62, 379–433.
    [Google Scholar]
  21. Jerse, A. E., Yu, J., Tall, B. D. & Kaper, J. B ( 1990; ). A genetic locus of enteropathogenic Escherichia coli necessary for the production of attaching and effacing lesions on tissue culture cells. Proc Natl Acad Sci U S A 87, 7839–7843.[CrossRef]
    [Google Scholar]
  22. Judge, N. A., Mason, H. S. & O'Brien, A. D. ( 2004; ). Plant cell-based intimin vaccine given orally to mice primed with intimin reduces time of Escherichia coli O157 : H7 shedding in faeces. Infect Immun 72, 168–175.[CrossRef]
    [Google Scholar]
  23. Kenny, B. & Jepson, M. ( 2000; ). Targeting of an enteropathogenic Escherichia coli (EPEC) effector protein to host mitochondria. Cell Microbiol 2, 579–590.[CrossRef]
    [Google Scholar]
  24. Kenny, B., DeVinney, R., Stein, M., Reinscheid, D. J., Frey, E. A. & Finlay, B. B. ( 1997; ). Enteropathogenic E. coli (EPEC) transfers its receptor for intimate adherence into mammalian cells. Cell 91, 511–520.[CrossRef]
    [Google Scholar]
  25. Knutton, S., Rosenshine, I., Pallen, M. J., Nisan, I., Neves, B. C., Bain, C., Wolff, C., Dougan, G. & Frankel, G. ( 1998; ). A novel EspA-associated surface organelle of enteropathogenic Escherichia coli involved in protein translocation into epithelial cells. EMBO J 17, 2166–2176.[CrossRef]
    [Google Scholar]
  26. Kresse, A. U., Beltrametti, F., Muller, A., Ebel, F. & Guzman, C. A. ( 2000; ). Characterization of sepL of enterohemorrhagic Escherichia coli. J Bacteriol 182, 6490–6498.[CrossRef]
    [Google Scholar]
  27. Low, J. C., McKendrick, I. J., McKechnie, C., Fenlon, D., Naylor, S. W., Currie, C., Smith, D. G. E., Allison, L. & Gally, D. L. ( 2005; ). Rectal carriage of enterohemorrhagic Escherichia coli O157 in slaughtered cattle. Appl Environ Microbiol 71, 93–97.[CrossRef]
    [Google Scholar]
  28. Mahajan, A., Naylor, S. W., Mills, A. & 7 other authors ( 2005; ). Phenotypic and functional characterisation of follicle-associated epithelium of rectal lymphoid tissue. Cell Tiss Res (in press). DOI: 10.1007/s00441-005-1080-1.
    [Google Scholar]
  29. Marches, O., Ledger, T. N., Boury, M. & 7 other authors ( 2003; ). Enteropathogenic and enterohaemorrhagic Escherichia coli deliver a novel effector called Cif, which blocks cell cycle G2/M transition. Mol Microbiol 50, 1553–1567.[CrossRef]
    [Google Scholar]
  30. McDaniel, T. K. & Kaper, J. B. ( 1997; ). A cloned pathogenicity island from enteropathogenic Escherichia coli confers the attaching and effacing phenotype on E. coli K-12. Mol Microbiol 23, 399–407.[CrossRef]
    [Google Scholar]
  31. McDaniel, T. K., Jarvis, K. G., Donnenberg, M. S. & Kaper, J. B. ( 1995; ). A genetic-locus of enterocyte effacement conserved among diverse enterobacterial pathogens. Proc Natl Acad Sci U S A 92, 1664–1668.[CrossRef]
    [Google Scholar]
  32. McKee, M. L., MeltonCelsa, A. R., Moxley, R. A., Francis, D. H. & O'Brien, A. D. ( 1995; ). Enterohemorrhagic Escherichia coli O157 : H7 requires intimin to colonize the gnotobiotic pig intestine and to adhere to HEP 2 cells. Infect Immun 63, 3739–3744.
    [Google Scholar]
  33. McNamara, B. P. & Donnenberg, M. S. ( 1998; ). A novel proline-rich protein, EspF, is secreted from enteropathogenic Escherichia coli via the type III export pathway. FEMS Microbiology Lett 166, 71–78.[CrossRef]
    [Google Scholar]
  34. Mundy, R., Petrovska, L., Smollett, K. & 8 other authors ( 2004; ). Identification of a novel Citrobacter rodentium type III secreted protein, EspI, and roles of this and other secreted proteins in infection. Infect Immun 72, 2288–2302.[CrossRef]
    [Google Scholar]
  35. Nataro, J. P. & Kaper, J. B. ( 1998; ). Diarrheagenic Escherichia coli. Clin Microbiol Rev 11, 142–203.
    [Google Scholar]
  36. Naylor, S. W., Low, J. C., Besser, T. E., Mahajan, A., Gunn, G. J., Pearce, M. C., McKendrick, I. J., Smith, D. G. E. & Gally, D. L. ( 2003; ). Lymphoid follicle-dense mucosa at the terminal rectum is the principal site of colonization of enterohemorrhagic Escherichia coli O157 : H7 in the bovine host. Infect Immun 71, 1505–1512.[CrossRef]
    [Google Scholar]
  37. Nicoletti, C. ( 2000; ). Unsolved mysteries of intestinal M cells. Gut 47, 735–739.[CrossRef]
    [Google Scholar]
  38. Owen, R. L. ( 1999; ). Uptake and transport of intestinal macromolecules and microorganisms by M cells in Peyer's patches – a personal and historical perspective. Sem Immun 11, 157–163.[CrossRef]
    [Google Scholar]
  39. Potter, A. A., Klashinsky, S., Li, Y. L. & 9 other authors ( 2004; ). Decreased shedding of Escherichia coli O157 : H7 by cattle following vaccination with type III secreted proteins. Vaccine 22, 362–369.[CrossRef]
    [Google Scholar]
  40. Rice, D. H., Sheng, H. Q. Q., Wynia, S. A. & Hovde, C. J. ( 2003; ). Rectoanal mucosal swab culture is more sensitive than fecal culture and distinguishes Escherichia coli O157 : H7-colonized cattle and those transiently shedding the same organism. J Clin Microbiol 41, 4924–4929.[CrossRef]
    [Google Scholar]
  41. Roe, A. J., Yull, H., Naylor, S. W., Woodward, M. J., Smith, D. G. E. & Gally, D. L. ( 2003; ). Heterogeneous surface expression of EspA translocon filaments by Escherichia coli O157 : H7 is controlled at the posttranscriptional level. Infect Immun 71, 5900–5909.[CrossRef]
    [Google Scholar]
  42. Roe, A. J., Naylor, S. W., Spears, K. J. & 8 other authors ( 2004; ). Co-ordinate single-cell expression of LEE4- and LEE5-encoded proteins of Escherichia coli O157 : H7. Mol Microbiol 54, 337–352.[CrossRef]
    [Google Scholar]
  43. Sheng, H. Q., Davis, M. A., Knecht, H. J. & Hovde, C. J. ( 2004; ). Rectal administration of Escherichia coli O157 : H7: novel model for colonization of ruminants. Appl Environ Microbiol 70, 4588–4595.[CrossRef]
    [Google Scholar]
  44. Siebers, A. & Finlay, B. B. ( 1996; ). M cells and the pathogenesis of mucosal and systemic infections. Trends Microbiol 4, 22–29.[CrossRef]
    [Google Scholar]
  45. Sinclair, J. F. & O'Brien, A. D. ( 2002; ). Cell surface-localized nucleolin is a eukaryotic receptor for the adhesin intimin-gamma of enterohemorrhagic Escherichia coli O157 : H7. J Biol Chem 277, 2876–2885.[CrossRef]
    [Google Scholar]
  46. Stevens, M. P., van Diemen, P. M., Dziva, F., Jones, P. W. & Wallis, T. S. ( 2002; ). Options for the control of enterohaemorrhagic Escherichia coli in ruminants. Microbiology 148, 3767–3778.
    [Google Scholar]
  47. Stevens, M. P., Roe, A. J., Vlisidou, I., van Diemen, P. M., La Ragione, R. M., Best, A., Woodward, M. J., Gally, D. L. & Wallis, T. S. ( 2004; ). Mutation of toxB and a truncated version of the efa-1 gene in Escherichia coli O157 : H7 influences the expression and secretion of locus of enterocyte effacement-encoded proteins but not intestinal colonization in calves or sheep. Infect Immun 72, 5402–5411.[CrossRef]
    [Google Scholar]
  48. Taylor, K. A., O'Connell, C. B., Luther, P. W. & Donnenberg, M. S. ( 1998; ). The EspB protein of enteropathogenic Escherichia coli is targeted to the cytoplasm of infected HeLa cells. Infect Immun 66, 5501–5507.
    [Google Scholar]
  49. Tu, X. L., Nisan, I., Yona, C., Hanski, E. & Rosenshine, I. ( 2003; ). EspH, a new cytoskeleton-modulating effector of enterohaemorrhagic and enteropathogenic Escherichia coli. Mol Microbiol 47, 595–606.[CrossRef]
    [Google Scholar]
  50. van Diemen, P. M., Dziva, F., Stevens, M. P. & Wallis, T. S. ( 2005; ). Identification of Enterohemorrhagic Escherichia coli O26 : H genes required for intestinal colonization in calves. Infect Immun 73, 1735–1743.[CrossRef]
    [Google Scholar]
  51. Wachter, C., Beinke, C., Mattes, M. & Schmidt, M. A. ( 1999; ). Insertion of EspD into epithelial target cell membranes by infecting enteropathogenic Escherichia coli. Mol Microbiol 31, 1695–1707.[CrossRef]
    [Google Scholar]
  52. Wales, A. D., Pearson, G. R., Skuse, A. M., Roe, J. M., Hayes, C. M., Cookson, A. L. & Woodward, M. J. ( 2001; ). Attaching and effacing lesions caused by Escherichia coli O157 : H7 in experimentally inoculated neonatal lambs. J Med Microbiol 50, 752–758.
    [Google Scholar]
  53. Wiles, S., Clare, S., Harker, J., Huett, A., Young, D., Dougan, G. & Frankel, G. ( 2004; ). Organ specificity, colonization and clearance dynamics in vivo following oral challenges with the murine pathogen Citrobacter rodentium. Cell Microbiol 6, 963–972.[CrossRef]
    [Google Scholar]
  54. Wilson, R. K., Shaw, R. K., Daniell, S., Knutton, S. & Frankel, G. ( 2001; ). Role of EscF, a putative needle complex protein, in the type III protein translocation system of enteropathogenic Escherichia coli. Cell Microbiol 3, 753–762.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.28060-0
Loading
/content/journal/micro/10.1099/mic.0.28060-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error