1887

Abstract

Bacteria undergo a variety of physiological changes following a switch from planktonic growth to surface-associated biofilm growth. Here, it is shown that biofilm development of a marine isolate, sp. 1398, results in global changes in its cytosolic and extracellular proteomes. Calcium influences these proteome responses, and affects the amount of surface-associated biomass and extracellular matrix material produced by sp. 1398. Four extracellular proteins, characterized by N-terminal sequencing, showed increased abundances, while one protein, flagellin, showed reduced abundance at higher [Ca]. Immunoblotting and transmission-electron-microscopy analysis confirmed that higher [Ca] and surface-associated growth results in the repression of flagella production. Two-dimensional gel electrophoresis (2DGE) studies combined with cluster analysis of global proteome responses demonstrated that Ca had a greater regulatory influence on sp. growing in biofilms than on planktonic cultures. Approximately 22 % of the total cytosolic proteins resolved by 2DGE had differing abundances in response to a switch from planktonic growth to surface-associated growth when the cells were cultivated in 1 mM Ca. At higher [Ca] this number increased to 38 %. Fifteen cellular proteins that were differentially expressed in response to biofilm growth and/or Ca were analysed by N-terminal sequencing and/or MS/MS. These proteins were identified as factors involved in cellular metabolic functions, putative proteases and transport proteins, although there were several proteins that had not been previously characterized. These results indicate that Ca causes global changes in matrix material, as well as in cellular and extracellular protein profiles of sp. 1398. These changes are more pronounced when the bacterium grows in biofilms than when it grows in planktonic culture.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.28041-0
2005-09-01
2019-10-18
Loading full text...

Full text loading...

/deliver/fulltext/micro/151/9/mic1512885.html?itemId=/content/journal/micro/10.1099/mic.0.28041-0&mimeType=html&fmt=ahah

References

  1. Altschul, S. F., Madden, T. L., Schaffer, A. A., Zhang, J., Zhang, Z., Miller, W. & Lipman, D. J. ( 1997; ). Gapped blast and psi-blast: a new generation of protein database search programs. Nucleic Acids Res 25, 3389–3402.[CrossRef]
    [Google Scholar]
  2. Ausubel, F. M., Brent, R., Kingston, R. E., Moore, D. D., Seidman, J. G. & Struhl, K. ( 1988; ). Current Protocols in Molecular Biology. Canada: Wiley.
  3. Chang, B. Y. & White, D. ( 1992; ). Cell surface modifications induced by calcium ion in the myxobacterium Stigmatella aurantiaca. J Bacteriol 174, 5780–5787.
    [Google Scholar]
  4. Craven, S. E. & Williams, D. D. ( 1998; ). In vitro attachment of Salmonella typhimurium to chicken cecal mucus: effect of cations and pretreatment with Lactobacillus spp. isolated from the intestinal tracts of chickens. J Food Prot 61, 265–271.
    [Google Scholar]
  5. Dalton, H. M., Poulsen, L. K., Halasz, P., Angles, M. L., Goodman, A. E. & Marshall, K. C. ( 1994; ). Substratum-induced morphological changes in a marine bacterium and their relevance to biofilm structure. J Bacteriol 176, 6900–6906.
    [Google Scholar]
  6. Davies, D. G., Chakrabarty, A. M. & Geesey, G. G. ( 1993; ). Exopolysaccharide production in biofilms: substratum activation of alginate gene expression by Pseudomonas aeruginosa. Appl Environ Microbiol 59, 1181–1186.
    [Google Scholar]
  7. Egan, S., Thomas, T., Holmstrom, C. & Kjelleberg, S. ( 2000; ). Phylogenetic relationship and antifouling activity of bacterial epiphytes from the marine alga Ulva lactuca. Environ Microbiol 2, 343–347.[CrossRef]
    [Google Scholar]
  8. Espinosa-Urgel, M., Salido, A. & Ramos, J. L. ( 2000; ). Genetic analysis of functions involved in adhesion of Pseudomonas putida to seeds. J Bacteriol 182, 2363–2369.[CrossRef]
    [Google Scholar]
  9. Finan, T. M., Weidner, S., Wong, K. & 8 other authors ( 2001; ). The complete sequence of the 1,683-kb pSymB megaplasmid from the N2-fixing endosymbiont Sinorhizobium meliloti. Proc Natl Acad Sci U S A 98, 9889–9894.[CrossRef]
    [Google Scholar]
  10. Finelli, A., Gallant, C. V., Jarvi, K. & Burrows, L. L. ( 2003; ). Use of in-biofilm expression technology to identify genes involved in Pseudomonas aeruginosa biofilm development. J Bacteriol 185, 2700–2710.[CrossRef]
    [Google Scholar]
  11. Geesey, G. G., Wigglesworth-Cooksey, B. & Cooksey, K. E. ( 2000; ). Influence of calcium and other cations on surface adhesion of bacteria and diatoms: a review. Biofouling 15, 195–205.[CrossRef]
    [Google Scholar]
  12. Gerhardt, P. E. ( 1994; ). Methods for General and Molecular Bacteriology. Washington, DC: American Society for Microbiology.
  13. Glockner, F. O., Kube, M., Bauer, M. & 11 other authors ( 2003; ). Complete genome sequence of the marine planctomycete Pirellula sp. strain 1. Proc Natl Acad Sci U S A 100, 8298–8303.[CrossRef]
    [Google Scholar]
  14. Gorg, A. ( 1999; ). IPG-Dalt of very alkaline proteins. Methods Mol Biol 112, 197–209.
    [Google Scholar]
  15. Gorg, A., Boguth, G., Obermaier, C., Posch, A. & Weiss, W. ( 1995; ). Two-dimensional polyacrylamide gel electrophoresis with immobilized pH gradients in the first dimension (IPG-Dalt): the state of the art and the controversy of vertical versus horizontal systems. Electrophoresis 16, 1079–1086.[CrossRef]
    [Google Scholar]
  16. Gorg, A., Obermaier, C., Boguth, G., Harder, A., Scheibe, B., Wildgruber, R. & Weiss, W. ( 2000; ). The current state of two-dimensional electrophoresis with immobilized pH gradients. Electrophoresis 21, 1037–1053.[CrossRef]
    [Google Scholar]
  17. Heidelberg, J. F., Eisen, J. A., Nelson, W. C. & 23 other authors ( 2000; ). DNA sequence of both chromosomes of the cholera pathogen Vibrio cholerae. Nature 406, 477–483.[CrossRef]
    [Google Scholar]
  18. Hinsa, S. M., Espinosa-Urgel, M., Ramos, J. L. & O'Toole, G. A. ( 2003; ). Transition from reversible to irreversible attachment during biofilm formation by Pseudomonas fluorescens WCS365 requires an ABC transporter and a large secreted protein. Mol Microbiol 49, 905–918.[CrossRef]
    [Google Scholar]
  19. Holland, I. B., Jones, H. E., Campbell, A. K. & Jacq, A. ( 1999; ). An assessment of the role of intracellular free Ca2+ in E. coli. Biochimie 81, 901–907.[CrossRef]
    [Google Scholar]
  20. Holmstrom, C. & Kjelleberg, S. ( 1999; ). Marine Pseudoalteromonas species are associated with higher organisms and produce biologically active extracellular agents. FEMS Microbiol Ecol 30, 285–293.[CrossRef]
    [Google Scholar]
  21. Hou, S. J. H., Saw, K. S., Lee, T. & 19 other authors ( 2004; ). Genome sequence of the deep-sea gamma-proteobacterium Idiomarina loihiensis reveals amino acid fermentation as a source of carbon and energy. Proc Natl Acad Sci U S A 101, 18036–18041.[CrossRef]
    [Google Scholar]
  22. Kachlany, S. C., Planet, P. J., DeSalle, R., Fine, D. H. & Figurski, D. H. ( 2001; ). Genes for tight adherence of Actinobacillus actinomycetemcomitans: from plaque to plague to pond scum. Trends Microbiol 9, 429–437.[CrossRef]
    [Google Scholar]
  23. Kallstrom, H., Hansson-Palo, P. & Jonsson, A. B. ( 2000; ). Cholera toxin and extracellular Ca2+ induce adherence of non-piliated Neisseria: evidence for an important role of G-proteins and Rho in the bacteria-cell interaction. Cell Microbiol 2, 341–351.[CrossRef]
    [Google Scholar]
  24. Kierek, K. & Watnick, P. I. ( 2003; ). The Vibrio cholerae O139 O-antigen polysaccharide is essential for Ca2+-dependent biofilm development in sea water. Proc Natl Acad Sci U S A 100, 14357–14362.[CrossRef]
    [Google Scholar]
  25. Korstgens, V., Flemming, H. C., Wingender, J. & Borchard, W. ( 2001; ). Influence of calcium ions on the mechanical properties of a model biofilm of mucoid Pseudomonas aeruginosa. Water Sci Technol 43, 49–57.
    [Google Scholar]
  26. Kuchma, S. L. & O'Toole, G. A. ( 2000; ). Surface-induced and biofilm-induced changes in gene expression. Curr Opin Biotechnol 11, 429–433.[CrossRef]
    [Google Scholar]
  27. Laemmli, U. K. ( 1970; ). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680–685.[CrossRef]
    [Google Scholar]
  28. Matsumoto, M., Yoshida, E., Takeyama, H. & Matsunaga, T. ( 2000; ). Floating cultivation of marine cyanobacteria using coal fly ash. Appl Biochem Biotechnol 84–86, 51–57.
    [Google Scholar]
  29. Michiels, J., Xi, C., Verhaert, J. & Vanderleyden, J. ( 2002; ). The functions of Ca2+ in bacteria: a role for EF-hand proteins? Trends Microbiol 10, 87–93.[CrossRef]
    [Google Scholar]
  30. Nivens, D. E., Ohman, D. E., Williams, J. & Franklin, M. J. ( 2001; ). Role of alginate and its O acetylation in formation of Pseudomonas aeruginosa microcolonies and biofilms. J Bacteriol 183, 1047–1057.[CrossRef]
    [Google Scholar]
  31. Norris, V., Grant, S., Freestone, P., Canvin, J., Sheikh, F. N., Toth, I., Trinei, M., Modha, K. & Norman, R. I. ( 1996; ). Calcium signalling in bacteria. J Bacteriol 178, 3677–3682.
    [Google Scholar]
  32. O'Toole, G. A. & Kolter, R. ( 1998; ). Initiation of biofilm formation in Pseudomonas fluorescens WCS365 proceeds via multiple, convergent signalling pathways: a genetic analysis. Mol Microbiol 28, 449–461.[CrossRef]
    [Google Scholar]
  33. Perrot, F., Hebraud, M., Charlionet, R., Junter, G. A. & Jouenne, T. ( 2000; ). Protein patterns of gel-entrapped Escherichia coli cells differ from those of free-floating organisms. Electrophoresis 21, 645–653.[CrossRef]
    [Google Scholar]
  34. Pratt, L. A. & Kolter, R. ( 1999; ). Genetic analyses of bacterial biofilm formation. Curr Opin Microbiol 2, 598–603.[CrossRef]
    [Google Scholar]
  35. Rabilloud, T. ( 2000; ). Detecting proteins separated by 2-D gel electrophoresis. Anal Chem 72, 48A–55A.
    [Google Scholar]
  36. Ren, D., Bedzyk, L. A., Thomas, S. M., Ye, R. W. & Wood, T. K. ( 2004; ). Gene expression in Escherichia coli biofilms. Appl Microbiol Biotechnol 64, 515–524.[CrossRef]
    [Google Scholar]
  37. Rose, R. K. ( 2000; ). The role of calcium in oral streptococcal aggregation and the implications for biofilm formation and retention. Biochim Biophys Acta 1475, 76–82.[CrossRef]
    [Google Scholar]
  38. Rose, R. K. & Turner, S. J. ( 1998; ). Extracellular volume in streptococcal model biofilms: effects of pH, calcium and fluoride. Biochim Biophys Acta 1379, 185–190.[CrossRef]
    [Google Scholar]
  39. Sarkisova, S., Patrauchan, M. A., Berglund, D., Nivens, D. E. & Franklin, M. J. ( 2005; ). Calcium-induced virulence factors associated with the extracellular matrix of mucoid Pseudomonas aeruginosa biofilms. J Bacteriol 187, 4327–4337.[CrossRef]
    [Google Scholar]
  40. Sauer, K. & Camper, A. K. ( 2001; ). Characterization of phenotypic changes in Pseudomonas putida in response to surface-associated growth. J Bacteriol 183, 6579–6589.[CrossRef]
    [Google Scholar]
  41. Sauer, K., Camper, A. K., Ehrlich, G. D., Costerton, J. W. & Davies, D. G. ( 2002; ). Pseudomonas aeruginosa displays multiple phenotypes during development as a biofilm. J Bacteriol 184, 1140–1154.[CrossRef]
    [Google Scholar]
  42. Schoolnik, G. K., Voskuil, M. I., Schnappinger, D., Yildiz, F. H., Meibom, K., Dolganov, N. A., Wilson, M. A. & Chong, K. H. ( 2001; ). Whole genome DNA microarray expression analysis of biofilm development by Vibrio cholerae O1 E1 Tor. Methods Enzymol 336, 3–18.
    [Google Scholar]
  43. Shevchenko, A., Sunyaev, S., Loboda, A., Bork, P., Ens, W. & Standing, K. G. ( 2001; ). Charting the proteomes of organisms with unsequenced genomes by MALDI-quadrupole time-of-flight mass spectrometry and blast homology searching. Anal Chem 73, 1917–1926.[CrossRef]
    [Google Scholar]
  44. Skovhus, T. L., Ramsing, N. B., Holmstrom, C., Kjelleberg, S. & Dahllof, I. ( 2004; ). Real-time quantitative PCR for assessment of abundance of Pseudoalteromonas species in marine samples. Appl Environ Microbiol 70, 2373–2382.[CrossRef]
    [Google Scholar]
  45. Tremoulet, F., Duche, O., Namane, A., Martinie, B. & Labadie, J. C. ( 2002; ). A proteomic study of Escherichia coli O157 : H7 NCTC 12900 cultivated in biofilm or in planktonic growth mode. FEMS Microbiol Lett 215, 7–14.[CrossRef]
    [Google Scholar]
  46. Waligora, A. J., Barc, M. C., Bourlioux, P., Collignon, A. & Karjalainen, T. ( 1999; ). Clostridium difficile cell attachment is modified by environmental factors. Appl Environ Microbiol 65, 4234–4238.
    [Google Scholar]
  47. Whiteley, M., Bangera, M. G., Bumgarner, R. E., Parsek, M. R., Teitzel, G. M., Lory, S. & Greenberg, E. P. ( 2001; ). Gene expression in Pseudomonas aeruginosa biofilms. Nature 413, 860–864.[CrossRef]
    [Google Scholar]
  48. Wigglesworth-Cooksey, B. & Cooksey, K. E. ( 2005; ). Use of fluorophore-conjugated lectins to study cell-cell interactions in model marine biofilms. Appl Environ Microbiol 71, 428–435.[CrossRef]
    [Google Scholar]
  49. Yang, K. ( 2001; ). Prokaryotic calmodulins: recent developments and evolutionary implications. J Mol Microbiol Biotechnol 3, 457–459.
    [Google Scholar]
  50. Zhu, J. & Mekalanos, J. J. ( 2003; ). Quorum sensing-dependent biofilms enhance colonization in Vibrio cholerae. Dev Cell 5, 647–656.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.28041-0
Loading
/content/journal/micro/10.1099/mic.0.28041-0
Loading

Data & Media loading...

Supplements

vol. , part 9, pp. 2885 - 2897

Subsections of two-dimensional gels of sp. protein extracts showing the effect of biofilm-associated growth and calcium addition on the amounts of individual proteins. Columns 1, 2, 3 and 4 are gel sections of protein extracts from cells cultured in minimal marine medium (MMM) with 0.25, 1.0, 5.0 and 10.0 mM CaCl2. Rows A, C, E and G are gel sections of protein extracts from cells in biofilm culture. Rows B, D, F and H are gel sections of protein extracts from cells in planktonic culture. Row A, B spot 1 – an example of a class I protein – shows an increased amount in biofilms, but is not affected by Ca2+. Rows C, D, spot 3 – an example of a class II protein – shows an increased amount in biofilms, and is influenced by Ca2+. Rows E, F, spots 14 and 15 – examples of class III proteins – show a decreased amount in biofilms, and are unaffected by Ca2+. Rows G, H, spot 16 – an example of a class IV protein – shows a decreased amount in biofilms, but is affected by Ca2+.[ PDF file] (255 KB)



PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error