1887

Abstract

is an opportunistic pathogen that has adapted to live and grow in the human body as its natural environment. Under these conditions, this fungus faces numerous challenges, including oxidative, osmotic and enzymic processes that may damage external and internal structures. In view of the key role of MAP kinase signalling pathways in the physiology of , the effect of agents mimicking environmental conditions on the activation of the p42-44 MAP kinases has been analysed. It has been found that Mkc1p is phosphorylated in the presence of oxidative stress, changes in osmotic pressure, cell wall damage and a decrease in the growth temperature. This phosphorylation is dependent on Pkc1p, indicating that both proteins operate in the same signalling pathway in . Under some stimuli, the phosphorylation of Mkc1p required the presence of Hog1p, the MAP kinase of the high osmolarity glycerol (HOG) pathway. This suggests the existence of a new regulatory role, at least under some conditions, for these MAP kinase pathways in yeast.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.28038-0
2005-08-01
2019-12-14
Loading full text...

Full text loading...

/deliver/fulltext/micro/151/8/mic1512737.html?itemId=/content/journal/micro/10.1099/mic.0.28038-0&mimeType=html&fmt=ahah

References

  1. Alonso-Monge, R., Navarro-García, F., Molero, G., Diez-Orejas, R., Gustin, M., Pla, J., Sánchez, M. & Nombela, C. ( 1999; ). Role of the mitogen-activated protein kinase Hog1p in morphogenesis and virulence of Candida albicans. J Bacteriol 181, 3058–3068.
    [Google Scholar]
  2. Alonso-Monge, R., Navarro-Garcia, F., Roman, E., Negredo, A. I., Eisman, B., Nombela, C. & Pla, J. ( 2003; ). The Hog1 mitogen-activated protein kinase is essential in the oxidative stress response and chlamydospore formation in Candida albicans. Eukaryot Cell 2, 351–361.[CrossRef]
    [Google Scholar]
  3. Anderson, N. G., Maller, J. L., Tonks, N. K. & Sturgill, T. W. ( 1990; ). Requirement for integration of signals from two distinct phosphorylation pathways for activation of MAP kinase. Nature 343, 651–653.[CrossRef]
    [Google Scholar]
  4. Arana, D. M., Nombela, C., Alonso-Monge, R. & Pla, J. ( 2005; ). The Pbs2 MAP kinase kinase is essential for the oxidative stress response in the fungal pathogen Candida albicans. Microbiology 151, 1033–1049.[CrossRef]
    [Google Scholar]
  5. Bardwell, L., Cook, J. G., Chang, E. C., Cairns, B. R. & Thorner, J. ( 1996; ). Signaling in the yeast pheromone response pathway: specific and high-affinity interaction of the mitogen-activated protein (MAP) kinases Kss1 and Fus3 with the upstream MAP kinase kinase Ste7. Mol Cell Biol 16, 3637–3650.
    [Google Scholar]
  6. Calera, J. A. & Calderone, R. A. ( 1999; ). Identification of a putative response regulator two-component phosphorelay gene (CaSSK1) from Candida albicans. Yeast 15, 1243–1254.[CrossRef]
    [Google Scholar]
  7. Calera, J. A., Choi, G. H. & Calderone, R. A. ( 1998; ). Identification of a putative histidine kinase two-component phosphorelay gene (CaHK1) in Candida albicans. Yeast 14, 665–674.[CrossRef]
    [Google Scholar]
  8. Calera, J. A., Herman, D. & Calderone, R. ( 2000; ). Identification of YPD1, a gene of Candida albicans which encodes a two-component phosphohistidine intermediate protein. Yeast 16, 1053–1059.[CrossRef]
    [Google Scholar]
  9. Callsen, D. & Brune, B. ( 1999; ). Role of mitogen-activated protein kinases in S-nitrosoglutathione-induced macrophage apoptosis. Biochemistry 38, 2279–2286.[CrossRef]
    [Google Scholar]
  10. Chauhan, N., Inglis, D., Roman, E., Pla, J., Li, D., Calera, J. A. & Calderone, R. ( 2003; ). Candida albicans response regulator gene SSK1 regulates a subset of genes whose functions are associated with cell wall biosynthesis and adaptation to oxidative stress. Eukaryot Cell 2, 1018–1024.[CrossRef]
    [Google Scholar]
  11. Chen, J., Chen, J., Lane, S. & Liu, H. ( 2002; ). A conserved mitogen-activated protein kinase pathway is required for mating in Candida albicans. Mol Microbiol 46, 1335–1344.[CrossRef]
    [Google Scholar]
  12. Csank, C., Schröppel, K., Leberer, E., Harcus, D., Mohamed, O., Meloche, S., Thomas, D. Y. & Whiteway, M. ( 1998; ). Roles of the Candida albicans mitogen-activated protein kinase homolog, Cek1p, in hyphal development and systemic candidiasis. Infect Immun 66, 2713–2721.
    [Google Scholar]
  13. Davenport, K. R., Sohaskey, M., Kamada, Y., Levin, D. E. & Gustin, M. C. ( 1995; ). A second osmosensing signal transduction pathway in yeast. Hypotonic shock activates the PKC1 protein kinase-regulated cell integrity pathway. J Biol Chem 270, 30157–30161.[CrossRef]
    [Google Scholar]
  14. de Souza, P. R. & Geibel, J. ( 1999; ). Direct observation of oxidative stress on the cell wall of Saccharomyces cerevisiae strains with atomic force microscopy. Mol Cell Biochem 201, 17–24.[CrossRef]
    [Google Scholar]
  15. Diez-Orejas, R., Molero, G., Navarro-García, F., Pla, J., Nombela, C. & Sánchez-Pérez, M. ( 1997; ). Reduced virulence of Candida albicans MKC1 mutants: a role for a mitogen-activated protein kinase in pathogenesis. Infect Immun 65, 833–837.
    [Google Scholar]
  16. Flury, N., Eppenberger, U. & Mueller, H. ( 1997; ). Tumor-necrosis factor-alpha modulates mitogen-activated protein kinase activity of epidermal-growth-factor-stimulated MCF-7 breast cancer cells. Eur J Biochem 249, 421–426.[CrossRef]
    [Google Scholar]
  17. Fonzi, W. A. & Irwin, M. Y. ( 1993; ). Isogenic strain construction and gene mapping in Candida albicans. Genetics 134, 717–728.
    [Google Scholar]
  18. Garrido, E., Voss, U., Muller, P., Castillo-Lluva, S., Kahmann, R. & Perez-Martin, J. ( 2004; ). The induction of sexual development and virulence in the smut fungus Ustilago maydis depends on Crk1, a novel MAPK protein. Genes Dev 18, 3117–3130.[CrossRef]
    [Google Scholar]
  19. Guhad, F. A., Jensen, H. E., Aalbaek, B., Csank, C., Mohamed, O., Harcus, D., Thomas, D. Y., Whiteway, M. & Hau, J. ( 1998; ). Mitogen-activated protein kinase-defective Candida albicans is avirulent in a novel model of localized murine candidiasis. FEMS Microbiol Lett 166, 135–139.[CrossRef]
    [Google Scholar]
  20. Harrison, J. C., Zyla, T. R., Bardes, E. S. & Lew, D. J. ( 2004; ). Stress-specific activation mechanisms for the ‘cell integrity’ MAPK pathway. J Biol Chem 279, 2616–2622.[CrossRef]
    [Google Scholar]
  21. Ibata-Ombetta, S., Jouault, T., Trinel, P. A. & Poulain, D. ( 2001; ). Role of extracellular signal-regulated protein kinase cascade in macrophage killing of Candida albicans. J Leukoc Biol 70, 149–154.
    [Google Scholar]
  22. Köhler, J. & Fink, G. R. ( 1996; ). Candida albicans strains heterozygous and homozygous for mutations in mitogen-activated protein kinase signaling components have defects in hyphal development. Proc Natl Acad Sci U S A 93, 13223–13228.[CrossRef]
    [Google Scholar]
  23. Köhler, G. A., White, T. C. & Agabian, N. ( 1997; ). Overexpression of a cloned IMP dehydrogenase gene of Candida albicans confers resistance to the specific inhibitor mycophenolic acid. J Bacteriol 179, 2331–2338.
    [Google Scholar]
  24. Leberer, E., Harcus, D., Broadbent, I. D. & 7 other authors ( 1996; ). Signal transduction through homologs of the Ste20p and Ste7p protein kinases can trigger hyphal formation in the pathogenic fungus Candida albicans. Proc Natl Acad Sci U S A 93, 13217–13222.[CrossRef]
    [Google Scholar]
  25. Lee, B. N. & Elion, E. A. ( 1999; ). The MAPKKK Ste11 regulates vegetative growth through a kinase cascade of shared signaling components. Proc Natl Acad Sci U S A 96, 12679–12684.[CrossRef]
    [Google Scholar]
  26. Liu, H., Köhler, J. & Fink, G. R. ( 1994; ). Suppression of hyphal formation in Candida albicans by mutation of a STE12 homolog. Science 266, 1723–1726.[CrossRef]
    [Google Scholar]
  27. Lommel, M., Bagnat, M. & Strahl, S. ( 2004; ). Aberrant processing of the WSC family and Mid2p cell surface sensors results in cell death of Saccharomyces cerevisiae O-mannosylation mutants. Mol Cell Biol 24, 46–57.[CrossRef]
    [Google Scholar]
  28. Lorenz, M. C., Bender, J. A. & Fink, G. R. ( 2004; ). Transcriptional response of Candida albicans upon internalization by macrophages. Eukaryot Cell 3, 1076–1087.[CrossRef]
    [Google Scholar]
  29. Magee, B. B., Legrand, M., Alarco, A. M., Raymond, M. & Magee, P. T. ( 2002; ). Many of the genes required for mating in Saccharomyces cerevisiae are also required for mating in Candida albicans. Mol Microbiol 46, 1345–1351.[CrossRef]
    [Google Scholar]
  30. Martín, H., Rodríguez-Pachón, J. M., Ruiz, C., Nombela, C. & Molina, M. ( 2000; ). Regulatory mechanisms for modulation of signaling through the cell integrity Slt2-mediated pathway in Saccharomyces cerevisiae. J Biol Chem 275, 1511–1519.[CrossRef]
    [Google Scholar]
  31. Nagahashi, S., Mio, T., Ono, N., Yamada-Okabe, T., Arisawa, M., Bussey, H. & Yamada-Okabe, H. ( 1998; ). Isolation of CaSLN1 and CaNIK1, the genes for osmosensing histidine kinase homologues, from the pathogenic fungus Candida albicans. Microbiology 144, 425–432.[CrossRef]
    [Google Scholar]
  32. Navarro-García, F., Sánchez, M., Pla, J. & Nombela, C. ( 1995; ). Functional characterization of the MKC1 gene of Candida albicans, which encodes a mitogen-activated protein kinase homolog related to cell integrity. Mol Cell Biol 15, 2197–2206.
    [Google Scholar]
  33. Navarro-García, F., Alonso-Monge, R., Rico, H., Pla, J., Sentandreu, R. & Nombela, C. ( 1998; ). A role for the MAP kinase gene MKC1 in cell wall construction and morphological transitions in Candida albicans. Microbiology 144, 411–424.[CrossRef]
    [Google Scholar]
  34. Nishida, E. & Gotoh, Y. ( 1993; ). The MAP kinase cascade is essential for diverse signal transduction pathways. Trends Biochem Sci 18, 128–131.[CrossRef]
    [Google Scholar]
  35. Odds, F. C. ( 1988; ). Candida and Candidosis. London: Baillière Tindall.
  36. Paravicini, G., Mendoza, A., Antonsson, B., Cooper, M., Losberger, C. & Payton, M. A. ( 1996; ). The Candida albicans PKC1 gene encodes a protein kinase C homolog necessary for cellular integrity but not dimorphism. Yeast 12, 741–756.[CrossRef]
    [Google Scholar]
  37. Phillips, A. J., Sudbery, I. & Ramsdale, M. ( 2003; ). Apoptosis induced by environmental stresses and amphotericin B in Candida albicans. Proc Natl Acad Sci U S A 100, 14327–14332.[CrossRef]
    [Google Scholar]
  38. Pla, J., Perez-Díaz, R. M., Navarro-García, F., Sánchez, M. & Nombela, C. ( 1995; ). Cloning of the Candida albicans HIS1 gene by direct complementation of a C. albicans histidine auxotroph using an improved double-ARS shuttle vector. Gene 165, 115–120.[CrossRef]
    [Google Scholar]
  39. San José, C., Alonso-Monge, R., Pérez-Díaz, R. M., Pla, J. & Nombela, C. ( 1996; ). The mitogen-activated protein kinase homolog HOG1 gene controls glycerol accumulation in the pathogenic fungus Candida albicans. J Bacteriol 178, 5850–5852.
    [Google Scholar]
  40. Smith, D. A., Nicholls, S., Morgan, B. A., Brown, A. J. & Quinn, J. ( 2004; ). A conserved stress-activated protein kinase regulates a core stress response in the human pathogen Candida albicans. Mol Biol Cell 15, 4179–4190.[CrossRef]
    [Google Scholar]
  41. Srikantha, T., Tsai, L. K., Daniels, K., Engel, L., Highley, K. & Soll, D. R. ( 1998; ). The two-component hybrid kinase regulator CaNIK1 of Candida albicans. Microbiology 144, 2715–2729.[CrossRef]
    [Google Scholar]
  42. Torres, L., Martín, H., García-Sáez, M. I., Arroyo, J., Molina, M., Sánchez, M. & Nombela, C. ( 1991; ). A protein kinase gene complements the lytic phenotype of Saccharomyces cerevisiae lyt2 mutants. Mol Microbiol 5, 2845–2854.[CrossRef]
    [Google Scholar]
  43. Vilella, F., Herrero, E., Torres, J. & de la Torre-Ruiz, M. A. ( 2005; ). Pkc1 and the upstream elements of the cell integrity pathway in Saccharomyces cerevisiae, Rom2 and Mtl1, are required for cellular responses to oxidative stress. J Biol Chem 280, 9149–9159.[CrossRef]
    [Google Scholar]
  44. Whiteway, M., Dignard, D. & Thomas, D. Y. ( 1992; ). Dominant negative selection of heterologous genes: isolation of Candida albicans genes that interfere with Saccharomyces cerevisiae mating factor-induced cell cycle arrest. Proc Natl Acad Sci U S A 89, 9410–9414.[CrossRef]
    [Google Scholar]
  45. Zaitsevskaya-Carter, T. & Cooper, J. A. ( 1997; ). Spm1, a stress-activated MAP kinase that regulates morphogenesis in S. pombe. EMBO J 16, 1318–1331.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.28038-0
Loading
/content/journal/micro/10.1099/mic.0.28038-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error