1887

Abstract

is a Gram-positive bacterium that lacks the cell division FtsA protein and actin-like MreB proteins responsible for determining cylindrical cell shape. When the cell division gene from () was cloned in different multicopy plasmids, the resulting constructions could not be introduced into ; it was assumed that elevated levels of FtsZ result in lethality. The presence of a truncated and a complete under the control of P led to a fourfold reduction in the intracellular levels of FtsZ, generating aberrant cells displaying buds, branches and knots, but no filaments. A 20-fold reduction of the FtsZ level by transformation with a plasmid carrying the gene dramatically reduced the growth rate of , and the cells were larger and club-shaped. Immunofluorescence microscopy of FtsZ or visualization of FtsZ–GFP in revealed that most cells showed one fluorescent band, most likely a ring, at the mid-cell, and some cells showed two fluorescent bands (septa of future daughter cells). When FtsZ–GFP was expressed from P, FtsZ rings at mid-cell, or spirals, were also clearly visible in the aberrant cells; however, this morphology was not entirely due to GFP but also to the reduced levels of FtsZ expressed from P. Localization of FtsZ at the septum is not negatively regulated by the nucleoid, and therefore the well-known occlusion mechanism seems not to operate in .

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.28036-0
2005-08-01
2024-11-03
Loading full text...

Full text loading...

/deliver/fulltext/micro/151/8/mic1512563.html?itemId=/content/journal/micro/10.1099/mic.0.28036-0&mimeType=html&fmt=ahah

References

  1. Adham S. A., Campelo A. B., Ramos A., Gil J. A. 2001a; Construction of a xylanase-producing strain of Brevibacterium lactofermentum by stable integration of an engineered. xysA gene from Streptomyces halstedii. JM8. Appl Environ Microbiol 67:5425–5430 [CrossRef]
    [Google Scholar]
  2. Adham S. A., Honrubia P., Diaz M., Fernandez-Abalos J. M., Santamaria R. I., Gil J. A. 2001b; Expression of the genes coding for the xylanase Xys1 and the cellulase Cel1 from the straw-decomposing Streptomyces halstedii. JM8 cloned into the amino-acid producer Brevibacterium lactofermentum ATCC13869. Arch Microbiol 17791–97 [CrossRef]
    [Google Scholar]
  3. Adham S. A., Rodriguez S., Ramos A., Santamaria R. I., Gil J. A. 2003; Improved vectors for transcriptional/translational signal screening in corynebacteria using the. melC operon from Streptomyces glaucescens as reporter. Arch Microbiol 180:53–59 [CrossRef]
    [Google Scholar]
  4. Amann E., Ochs B., Abel K. J. 1988; Tightly regulated tac promoter vectors useful for the expression of unfused and fused proteins in. Escherichia coli. Gene 69:301–315 [CrossRef]
    [Google Scholar]
  5. Begg K., Nikolaichik Y., Crossland N., Donachie W. D. 1998; Roles of FtsA and FtsZ in activation of division sites. J Bacteriol 180:881–884
    [Google Scholar]
  6. Ben Yehuda S., Losick R. 2002; Asymmetric cell division in B. subtilis involves a spiral-like intermediate of the cytokinetic protein FtsZ. Cell 109:257–266 [CrossRef]
    [Google Scholar]
  7. Bi E., Lutkenhaus J. 1990; FtsZ regulates frequency of cell division in. Escherichia coli. J Bacteriol 172:2765–2768
    [Google Scholar]
  8. Bierman M., Logan R., O'Brien K., Seno E. T., Rao R. N., Schoner B. E. 1992; Plasmid cloning vectors for the conjugal transfer of DNA from. Escherichia coli to Streptomyces. spp. Gene 116:43–49 [CrossRef]
    [Google Scholar]
  9. Daniel R. A., Errington J. 2003; Control of cell morphogenesis in bacteria: two distinct ways to make a rod-shaped cell. Cell 113:767–776 [CrossRef]
    [Google Scholar]
  10. Daniel R. A., Harry E. J., Errington J. 2000; Role of penicillin-binding protein PBP 2B in assembly and functioning of the division machinery of Bacillus subtilis. Mol Microbiol 35:299–311 [CrossRef]
    [Google Scholar]
  11. Dziadek J., Madiraju M. V., Rutherford S. A., Atkinson M. A., Rajagopalan M. 2002; Physiological consequences associated with overproduction of Mycobacterium tuberculosis FtsZ in mycobacterial hosts. Microbiology 148:961–971
    [Google Scholar]
  12. Fernandez-Gonzalez C., Cadenas R. F., Noirot-Gros M. F., Martin J. F., Gil J. A. 1994; Characterization of a region of plasmid pBL1 of Brevibacterium lactofermentum involved in replication via the rolling circle model. J Bacteriol 176:3154–3161
    [Google Scholar]
  13. Hale C. A, de Boer P. A. 1997; Direct binding of FtsZ to ZipA, an essential component of the septal ring structure that mediates cell division in. E. coli. Cell 88:175–185 [CrossRef]
    [Google Scholar]
  14. Hale C. A, de Boer P. A. 2002; ZipA is required for recruitment of FtsK, FtsQ, FtsL, and FtsN to the septal ring in. Escherichia coli. J Bacteriol 184:2552–2556 [CrossRef]
    [Google Scholar]
  15. Hanahan D. 1983; Studies on transformation of Escherichia coli with plasmids. J Mol Biol 166:557–580 [CrossRef]
    [Google Scholar]
  16. Honrubia M. P., Fernandez F. J., Gil J. A. 1998; Identification, characterization, and chromosomal organization of the ftsZ gene from Brevibacterium lactofermentum. Mol Gen Genet 259:97–104 [CrossRef]
    [Google Scholar]
  17. Honrubia M. P., Ramos A., Gil J. A. 2001; The cell division genes ftsQ and ftsZ, but not the three downstream open reading frames YFIH, ORF5 and ORF6, are essential for growth and viability in Brevibacterium lactofermentum. ATCC 13869. Mol Genet Genomics 2651022–1030 [CrossRef]
    [Google Scholar]
  18. Honrubia M. P., Ramos A., Gil J. A. 2005; Overexpression of the. ftsZ gene from Corynebacterium glutamicum (Brevibacterium lactofermentum) in Escherichia coli. Can J Microbiol 51:85–89 [CrossRef]
    [Google Scholar]
  19. Jager W., Schafer A., Puhler A., Labes G., Wohlleben W. 1992; Expression of the Bacillus subtilis sacB gene leads to sucrose sensitivity in the gram-positive bacterium. Corynebacterium glutamicum but not in Streptomyces lividans. J Bacteriol 174:5462–5465
    [Google Scholar]
  20. Kieser T. 1984; Factors affecting the isolation of CCC DNA from. Streptomyces lividans and Escherichia coli. Plasmid 12:19–36 [CrossRef]
    [Google Scholar]
  21. Kieser T., Bibb M. J., Buttner M. J., Chen B. F., Hopwood D. A. 2000 Practical Streptomyces Genetics Norwich: John Innes Foundation;
    [Google Scholar]
  22. Kijima N., Goyal D., Takada A., Wachi M., Nagai K. 1998; Induction of only limited elongation instead of filamentation by inhibition of cell division in. Corynebacterium glutamicum. Appl Microbiol Biotechnol 50:227–232 [CrossRef]
    [Google Scholar]
  23. Laemmli U. K. 1970; Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685 [CrossRef]
    [Google Scholar]
  24. Latch J. N., Margolin W. 1997; Generation of buds, swellings, and branches instead of filaments after blocking the cell cycle of. Rhizobium meliloti. J Bacteriol 179:2373–2381
    [Google Scholar]
  25. Ma X., Ehrhardt D. W., Margolin W. 1996; Colocalization of cell division proteins FtsZ and FtsA to cytoskeletal structures in living Escherichia coli cells by using green fluorescent protein. Proc Natl Acad Sci U S A 93:12998–13003 [CrossRef]
    [Google Scholar]
  26. Margolin W. 2000; Themes and variations in prokaryotic cell division. FEMS Microbiol Rev 24:531–548 [CrossRef]
    [Google Scholar]
  27. Margolin W. 2003; Bacterial shape: growing off this mortal coil. Curr Biol 13:R705–R707 [CrossRef]
    [Google Scholar]
  28. Margolin W., Corbo J. C., Long S. R. 1991; Cloning and characterization of a. Rhizobium meliloti homolog of the Escherichia coli cell division gene ftsZ. J Bacteriol 173:5822–5830
    [Google Scholar]
  29. Margolin W., Wang R., Kumar M. 1996; Isolation of an ftsZ homolog from the archaebacterium Halobacterium salinarium: implications for the evolution of FtsZ and tubulin. J Bacteriol 178:1320–1327
    [Google Scholar]
  30. Osteryoung K. W. 2001; Organelle fission in eukaryotes. Curr Opin Microbiol 4:639–646 [CrossRef]
    [Google Scholar]
  31. Osteryoung K. W., Vierling E. 1995; Conserved cell and organelle division. Nature 376:473–474
    [Google Scholar]
  32. Ramos A., Adham S. A., Gil J. A. 2003a; Cloning and expression of the inorganic pyrophosphatase gene from the amino acid producer Brevibacterium lactofermentum ATCC 13869. FEMS Microbiol Lett 225:85–92 [CrossRef]
    [Google Scholar]
  33. Ramos A., Honrubia M. P., Valbuena N., Vaquera J., Mateos L. M., Gil J. A. 2003b; Involvement of DivIVA in the morphology of the rod-shaped actinomycete Brevibacterium lactofermentum. Microbiology 149:3531–3542 [CrossRef]
    [Google Scholar]
  34. Salimnia H., Radia A., Bernatchez S., Beveridge T. J., Dillon J. R. 2000; Characterization of the. ftsZ cell division gene of Neisseria gonorrhoeae: expression in Escherichia coli and N. gonorrhoeae. Arch Microbiol 173:10–20 [CrossRef]
    [Google Scholar]
  35. Santamaria R. I., Gil J. A., Mesas J. M., Martin J. F. 1984; Characterization of an endogenous plasmid and development of cloning vectors and a transformation system in. Brevibacterium lactofermentum. J Gen Microbiol 130:2237–2246
    [Google Scholar]
  36. Santamaria R. I., Gil J. A., Martin J. F. 1985; High-frequency transformation of Brevibacterium lactofermentum protoplasts by plasmid DNA. J Bacteriol 162:463–467
    [Google Scholar]
  37. Schafer A., Kalinowski J., Simon R., Seep-Feldhaus A. H., Puhler A. 1990; High-frequency conjugal plasmid transfer from gram-negative Escherichia coli to various gram-positive coryneform bacteria. J Bacteriol 172:1663–1666
    [Google Scholar]
  38. Schafer A., Tauch A., Jager W., Kalinowski J., Thierbach G., Puhler A. 1994; Small mobilizable multi-purpose cloning vectors derived from the Escherichia coli plasmids pK18 and pK19: selection of defined deletions in the chromosome of. Corynebacterium glutamicum. Gene 145:69–73 [CrossRef]
    [Google Scholar]
  39. Siemering K. R., Golbik R., Sever R., Haseloff J. 1996; Mutations that suppress the thermosensitivity of green fluorescent protein. Curr Biol 6:1653–1663 [CrossRef]
    [Google Scholar]
  40. Sun Q., Margolin W. 1998; FtsZ dynamics during the division cycle of live Escherichia coli cells. J Bacteriol 180:2050–2056
    [Google Scholar]
  41. Sun Q., Margolin W. 2004; Effects of perturbing nucleoid structure on nucleoid occlusion-mediated toporegulation of FtsZ ring assembly. J Bacteriol 186:3951–3959 [CrossRef]
    [Google Scholar]
  42. Tabor S., Richardson C. C. 1985; A bacteriophage T7 RNA polymerase/promoter system for controlled exclusive expression of specific genes. Proc Natl Acad Sci U S A 82:1074–1078 [CrossRef]
    [Google Scholar]
  43. Tsuchiya M., Morinaga Y. 1988; Genetic control systems of Escherichia coli can confer inducible expression of cloned genes in coryneform bacteria. Biotechnology 6:428–430 [CrossRef]
    [Google Scholar]
  44. Umeda A., Amako K. 1983; Growth of the surface of Corynebacterium diphtheriae. Microbiol Immunol 27:663–671 [CrossRef]
    [Google Scholar]
  45. Ward J. E. Jr, Lutkenhaus J. 1985; Overproduction of FtsZ induces minicell formation in. E. coli. Cell 42:941–949 [CrossRef]
    [Google Scholar]
  46. Wu L. J., Errington J. 2004; Coordination of cell division and chromosome segregation by a nucleoid occlusion protein in Bacillus subtilis. Cell 117:915–925 [CrossRef]
    [Google Scholar]
  47. Yaoi T., Laksanalamai P., Jiemjit A., Kagawa H. K., Alton T., Trent J. D. 2000; Cloning and characterization of. ftsZ and pyrF from the archaeon Thermoplasma acidophilum. Biochem Biophys Res Commun 275:936–945 [CrossRef]
    [Google Scholar]
/content/journal/micro/10.1099/mic.0.28036-0
Loading
/content/journal/micro/10.1099/mic.0.28036-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error