A novel bacteriocin-like substance (BLIS) from a pathogenic strain of Free

Abstract

Inter-strain and inter-species inhibition mediated by a bacteriocin-like inhibitory substance (BLIS) from a pathogenic strain VIB 571 was demonstrated against four isolates of the same species, and one culture each of a sp., , and . The crude BLIS, which was obtained by ammonium-sulphate precipitation of the cell-free supernatant of a 72 h broth culture of strain VIB 571, was inactivated by lipase, proteinase K, pepsin, trypsin, pronase E, SDS and incubation at ≥60 °C for 10 min. The activity was stable between pH 2–11 for at least 5 h. Anion-exchange chromatography, gel filtration, SDS-PAGE and two-dimensional gel electrophoresis revealed the presence of a single major peak, comprising a protein with a pI of ∼5·4 and a molecular mass of ∼32 kDa. The N-terminal amino acid sequence of the protein comprised Asp-Glu-Tyr-Ile-Ser-X-Asn-Lys-X-Ser-Ser-Ala-Asp-Ile (with X representing cysteine or modified amino acid residues). A similarity search based on the matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) generated peptide masses and the N-terminal sequence did not yield any significant matches.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.28011-0
2005-09-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/151/9/mic1513051.html?itemId=/content/journal/micro/10.1099/mic.0.28011-0&mimeType=html&fmt=ahah

References

  1. Alcaide E., Gil-Sanz C., Amaro C., Silveira L, Sanjuán E., Esteve D. 2001; Vibrio harveyi causes disease in seahorse, Hippocampus sp. J Fish Dis 24:311–313 [CrossRef]
    [Google Scholar]
  2. Altschul S. F., Madden T. L., Zhang Z., Miller W., Lipman D. J, Schäffer A. A., Zhang J. 1997; Gapped blast and psi-blast: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402 [CrossRef]
    [Google Scholar]
  3. Ausubel F. M., Brent R., Kingston R. E., Moore D. D., Seidman J. G., Smith J. A., Struhl K. 1996 Current Protocols in Molecular Biology vol. 2suppl. 3110.2.2–10.2.35 New York: Wiley;
    [Google Scholar]
  4. Bradford M. M. 1976; A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein–dye binding. Anal Biochem 72:248–254 [CrossRef]
    [Google Scholar]
  5. Chhibber S., Vadehra D. V. 1986; Purification and characterization of bacteriocin from Klebsiella pneumoniae 158. J Gen Microbiol 132:1051–1054
    [Google Scholar]
  6. Cursino L., Smarda J., Chartone-Souza E., Nascimento A. M. A. 2002; Recent updated aspects of colicins of enterobacteriaceae. Braz J Microbiol 33:185–195
    [Google Scholar]
  7. Daw A. M., Falkiner F. R. 1996; Bacteriocins: nature, function and structure. Micron 27:467–479 [CrossRef]
    [Google Scholar]
  8. De Vuyst L., Vandamme E. J. 1994; Lactic acid bacteria and bacteriocins: their practical importance. In Bacteriocins of Lactic Acid Bacteria: Microbiology, Genetics and Applications , chapter 1 pp 1–11 Edited by Vuyst L. De, Vandamme E. J. London: Blackie Academic & Professional;
    [Google Scholar]
  9. Gallagher S. R. 1996; One dimensional SDS gel electrophoresis of proteins. In Current Protocols in Molecular Biology vol. 2suppl. 3110.2.2–10.2.35 Edited by Ausubel F. M., Brent R., Kingston R. E., Moore D. D., Seidman J. G., Smith J. A., Struhl K. New York: Wiley;
    [Google Scholar]
  10. Garfin D. E. 1990; One dimensional gel electrophoresis. Methods Enzymol 182:437–438
    [Google Scholar]
  11. Gratia A. 1925; Sur un remarquable exemple d'antagonisme entre deux souches de colibacille. C R Soc Biol 93:1040–1041
    [Google Scholar]
  12. Hamon Y., Peron Y. 1963; Individualisation de quelques nouvelles families d'entérobacteriocines. C R Acad Sci 257:309–311
    [Google Scholar]
  13. Hardy K. G., Meynell G. G. 1972; Induction of colicin factor E2-P9 by mitomycin C. J Bacteriol 112:1007–1009
    [Google Scholar]
  14. Herschman H. R., Helsinki D. R. 1967; Comparative study of the events of colicin induction. J Bacteriol 94:691–699
    [Google Scholar]
  15. Himsley F. H., Sey Fried P. L. 1962; Lethal biosynthesis of a new antibacterial principle: vibriocin. Nature 193:1193–1194 [CrossRef]
    [Google Scholar]
  16. Hoyt P. R., Sizemore R. K. 1982; Competitive dominance by a bacteriocin-producing Vibrio harveyi strain. Appl Environ Microbiol 44:653–658
    [Google Scholar]
  17. Jack R. W., Jung G. 2000; Lantibiotics and microcins: polypeptides with unusual chemical diversity. Curr Opin Chem Biol 4:310–317 [CrossRef]
    [Google Scholar]
  18. Jacob F. 1954; Biosynthèse induite et mode d'action d'une pyocine, antibiotique de Pseudomonas pyocyanea . Ann Inst Pasteur 86:149–160
    [Google Scholar]
  19. Jayawardene A., Himsley H. F. 1969; Vibriocin: a bacteriocin from Vibrio comma I production, purification, morphology and immunological studies. Microbios 1B:87–98
    [Google Scholar]
  20. Karunasagar I., Pai R., Malathi G. R., Karunasagar I. 1994; Mass mortality of Penaeus monodon larvae due to antibiotic resistant Vibrio harveyi infection. Aquaculture 128:203–209 [CrossRef]
    [Google Scholar]
  21. Kekessey D. A., Piquet J. D. 1970; New method for detecting bacteriocin production. J Appl Microbiol 20:282–283
    [Google Scholar]
  22. Klaenhammer T. R. 1988; Bacteriocins of lactic acid bacteria. Biochimie 70:337–349 [CrossRef]
    [Google Scholar]
  23. Kozak W., Bardowski J., Dobrzanski W. T. 1977; Lacstrepcin – a bacteriocin produced by Streptococcus lactis . Bull Acad Pol Sci Biol 25:217–221
    [Google Scholar]
  24. Laemmli U. K. 1970; Cleavage of structural proteins during the assembly of the head of the bacteriophage T4. Nature 227:680–685 [CrossRef]
    [Google Scholar]
  25. Lavilla-Pitogo C. R., Baticados M. C. L., Cruz-Lacierda E. R., de la Pena L. D. 1990; Occurrence of luminous bacterial disease of Penaeus monodon larvae in the Philippines. Aquaculture 91:1–13 [CrossRef]
    [Google Scholar]
  26. McCall J. O., Sizemore R. K. 1979; Description of a bacteriocinogenic plasmid in Beneckea harveyi . Appl Environ Microbiol 38:974–979
    [Google Scholar]
  27. Messi P., Guerrieri E., Bondi M. 2003; Bacteriocin-like substance (BLS) production in Aeromonas hydrophila water isolates. FEMS Microbiol Lett 220:121–125 [CrossRef]
    [Google Scholar]
  28. Miller M. B., Bassler B. L. 2001; Quorum sensing in bacteria. Annu Rev Microbiol 55:165–199 [CrossRef]
    [Google Scholar]
  29. Munoz J., Arias J. M., Montoya E. 1984; Production and properties of a bacteriocin from Myxococcus coralloides D. J Appl Bacteriol 57:69–74 [CrossRef]
    [Google Scholar]
  30. Nealson K. H., Hastings J. W. 1979; Bacterial bioluminescence: its control and ecological significance. Microbiol Rev 43:496–518
    [Google Scholar]
  31. Neuhoff V., Arold N., Taube D., Ehrhardt W. 1988; Improved staining of proteins in polyacrylamide gels including isoelectric focusing gels with clear background at nanogram sensitivity using Coomassie Brilliant Blue G-250 and R-250. Electrophoresis 9:255–262 [CrossRef]
    [Google Scholar]
  32. O'Brien C. H., Sizemore R. K. 1979; Distribution of the luminous bacterium Beneckea harveyi in a semitropical estuarine environment. Appl Environ Microbiol 38:928–933
    [Google Scholar]
  33. Perkins D. N., Pappin D. J. C., Creasy D. M., Cottrell J. S. 1999; Probability-based protein identification by searching sequence databases using mass spectrometry data. Electrophoresis 20:3551–3567 [CrossRef]
    [Google Scholar]
  34. Reeves P. 1965; The bacteriocins. Bacteriol Rev 29:24–25
    [Google Scholar]
  35. Reeves P. 1972; The bacteriocins. In Molecular Biology, Biochemistry and Biophysics vol 11 Edited by Kleinzeller A., Springer G. F, Wittman H. G. Heidelberg: Springer;
    [Google Scholar]
  36. Riley M. A. 1998; Molecular mechanisms of bacteriocin evolution. Annu Rev Genet 32:255–278 [CrossRef]
    [Google Scholar]
  37. Riley M. A., Wertz J. E. 2002; Bacteriocins: evolution, ecology and application. Annu Rev Microbiol 56:117–137 [CrossRef]
    [Google Scholar]
  38. Shehane S. D., Sizemore R. K. 2002; Isolation and preliminary characterization of bacteriocins produced by Vibrio vulnificus . J Appl Microbiol 92:322–328 [CrossRef]
    [Google Scholar]
  39. Spangler R., Zhang S., Kreuger J., Zubay G. 1985; Colicin synthesis and cell death. J Bacteriol 163:167–173
    [Google Scholar]
  40. Strauch E., Kaspar H., Schaudinn C., Dersch P., Madela K., Gewinner C., Hertwig S., Wecke J., Appel B. 2001; Characterization of enterocoliticin, a phage tail-like bacteriocin, and its effect on pathogenic Yersinia enterocolitica strains. Appl Environ Microbiol 67:5634–5642 [CrossRef]
    [Google Scholar]
  41. Tagg J. R. 1992; Bacteriocins of gram positive bacteria; an opinion regarding their nature, nomenclature and numbers. In Bacteriocins, Microcins and Lantibiotics Edited by James R., Lazdunski C., Pattus F. NATO ASI series Berlin & New York: Springer;
    [Google Scholar]
  42. Tagg J. R., Dajani A. S., Wannamaker L. W. 1976; Bacteriocins of gram positive bacteria. Bacteriol Rev 40:722–756
    [Google Scholar]
  43. Upreti G. C., Hinsdill R. D. 1975; Production and mode of action of lactocin 27: bacteriocin from a homofermentative Lactobacillus . Antimicrob Agents Chemother 7:139–145 [CrossRef]
    [Google Scholar]
  44. Yamamoto Y., Togawa Y., Shimosaka M., Okazaki M. 2003; Purification and characterization of a novel bacteriocin produced by Enterococcus faecalis strain RJ-11. Appl Environ Microbiol 69:5746–5753 [CrossRef]
    [Google Scholar]
  45. Zhang X.-H., Austin B. 2000; Pathogenicity of Vibrio harveyi to salmonids. J Fish Dis 23:93–102 [CrossRef]
    [Google Scholar]
  46. Zhang S., Faro A., Zubay G. 1985; Mitomycin C induced lethality of Escherichia coli cells containing the Col E1 plasmid: involvement of the kil gene. J Bacteriol 163:174–179
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.28011-0
Loading
/content/journal/micro/10.1099/mic.0.28011-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Most cited Most Cited RSS feed