1887

Abstract

The wrinkly spreader (WS) isolate of SBW25 forms a substantial biofilm at the air–liquid interface. The biofilm is composed of an extracellular partially acetylated cellulose-fibre matrix, and previous mutagenesis of WS with mini-Tn had identified both the regulatory and cellulose-biosynthetic operons. One uncharacterized WS mutant, WS-5, still expressed cellulose but produced very weak biofilms. In this work, the mini-Tn insertion site in WS-5 has been identified as being immediately upstream of the operon. Like Tol-Pal mutants of other Gram-negative bacteria, WS-5 showed a ‘leaky-membrane’ phenotype, including the serendipitous ability to utilize sucrose, increased uptake of the hydrophilic dye propidium iodide, and the loss of lipopolysaccharide (LPS) expression. WS-5 cells were altered in relative hydrophobicity, and showed poorer recruitment and maintenance in the biofilm than WS. The WS-5 biofilm was also less sensitive to chemical interference during development. However, growth rate, cellulose expression and attachment were not significantly different between WS and WS-5. Finally, WS-5 biofilms could be partially complemented with WS-4, a biofilm- and attachment-deficient mutant that expressed LPS, resulting in a mixed biofilm with significantly increased strength. These findings show that a major component of the WS air–liquid biofilm strength results from the interactions between LPS and the cellulose matrix of the biofilm – and that in the WS biofilm, cellulose fibres, attachment factor and LPS are required for biofilm development, strength and integrity.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.27984-0
2005-09-01
2019-10-18
Loading full text...

Full text loading...

/deliver/fulltext/micro/151/9/mic1512829.html?itemId=/content/journal/micro/10.1099/mic.0.27984-0&mimeType=html&fmt=ahah

References

  1. Al-Tahhan, R. A., Sandrin, T. R., Bodour, A. A. & Maier, R. M. ( 2000; ). Rhamnolipid-induced removal of lipopolysaccharide from Pseudomonas aeruginosa: effect on cell surface properties and interaction with hydrophobic substrates. Appl Environ Microbiol 66, 3262–3268.[CrossRef]
    [Google Scholar]
  2. Cadieux, J. E., Kuzio, J., Milazzo, F. H. & Kropinski, A. M. ( 1983; ). Spontaneous release of lipopolysaccharide by Pseudomonas aeruginosa. J Bacteriol 155, 817–825.
    [Google Scholar]
  3. Costerton, J. W., Lewandowski, Z., Cladwell, D. E., Korber, D. R. & Lappin-Scott, H. M. ( 1995; ). Microbial biofilms. Annu Rev Microbiol 49, 711–745.[CrossRef]
    [Google Scholar]
  4. Dalton, H. M. & March, P. E. ( 1998; ). Molecular genetics of bacterial attachment and biofouling. Curr Opin Biotechnol 9, 252–255.[CrossRef]
    [Google Scholar]
  5. Davey, M. E. & O'Toole, G. A. ( 2000; ). Microbial biofilms: from ecology to molecular genetics. Microbiol Mol Biol Rev 64, 847–867.[CrossRef]
    [Google Scholar]
  6. De Lima Pimenta, A., Di Martino, P., Le Bouder, E., Hulen, C. & Blight, M. A. ( 2003; ). In vitro identification of two adherence factors required for in vivo virulence of Pseudomonas fluorescens. Microbes Infect 13, 1177–1187.
    [Google Scholar]
  7. Dennis, J. J. & Zylstra, G. J. ( 1998; ). Improved antibiotic-resistance cassettes through restriction site elimination using Pfu DNA polymerase PCR. Biotechniques 25, 772–776.
    [Google Scholar]
  8. Donlan, R. M. ( 2002; ). Biofilms: microbial life on surfaces. Emerg Infect Dis 8, 881–890.[CrossRef]
    [Google Scholar]
  9. Dunne, W. M. ( 2002; ). Bacterial adhesion: seen any good biofilms lately? Clin Microbiol Rev 15, 155–166.[CrossRef]
    [Google Scholar]
  10. Gaspar, J. A., Thomas, J. A., Marolda, C. L. & Valvano, M. A. ( 2000; ). Surface expression of O-specific lipopolysaccharide in Escherichia coli requires the function of the TolA protein. Mol Microbiol 38, 262–275.[CrossRef]
    [Google Scholar]
  11. Genevaux, P., Bauda, P., DuBow, M. S. & Oudega, B. ( 1999; ). Identification of Tn10 insertions in the rfaG, rfaP, and galU genes involved in lipopolysaccharide core biosynthesis that affect Escherichia coli adhesion. Arch Microbiol 172, 1–8.[CrossRef]
    [Google Scholar]
  12. Ghigo, J.-M. ( 2003; ). Are there biofilm-specific physiological pathways beyond a reasonable doubt? Res Microbiol 154, 1–8.[CrossRef]
    [Google Scholar]
  13. Giwercman, B., Fomsgaard, A., Mansa, B. & Hoiby, N. ( 1992; ). Polyacrylamide gel electrophoresis analysis of lipopolysaccharide from Pseudomonas aeruginosa growing planktonically and as biofilm. FEMS Microbiol Immunol 4, 225–229.
    [Google Scholar]
  14. Götz, F. ( 2002; ). Staphylococcus and biofilms. Mol Microbiol 43, 1367–1378.[CrossRef]
    [Google Scholar]
  15. Goymer, P. J. ( 2002; ). The role of the WspR response regulator in the adaptive evolution of experimental populations of Pseudomonas fluorescens SBW25. DPhil thesis, University of Oxford.
  16. Groisman, E. A., Kayser, J. & Soncini, F. C. ( 1997; ). Regulation of polymyxin resistance and adaptation to low-Mg2+ environments. J Bacteriol 179, 7040–7045.
    [Google Scholar]
  17. Hall-Stoodley, L. & Stoodley, P. ( 2002; ). Developmental regulation of microbial biofilms. Curr Opin Biotechnol 13, 228–233.[CrossRef]
    [Google Scholar]
  18. Hall-Stoodley, L., Costerton, J. W. & Stoodley, P. ( 2004; ). Bacterial biofilms: survival and propagation on surfaces from the environment to infectious diseases. Nat Rev Microbiol 2, 95–108.[CrossRef]
    [Google Scholar]
  19. Ishiguro, E. E., Vanderwel, D. & Kusser, W. ( 1986; ). Control of lipopolysaccharide biosynthesis and release by Escherichia coli and Salmonella typhimurium. J Bacteriol 168, 328–333.
    [Google Scholar]
  20. Kai, A. & Mondal, I. H. ( 1997; ). Influence of substituent of direct dye having bisphenylenebis(azo) skeletal structure on structure of nascent cellulose produced by Acetobacter xylinum [I]: different influence of Direct Red 28, Blue 1 and 15 on nascent structure. Int J Biol Macromol 20, 221–231.[CrossRef]
    [Google Scholar]
  21. King, E. O., Ward, M. K. & Raney, D. C. ( 1954; ). Two simple media for the demonstration of pyocyanin and fluorescin. J Lab Clin Med 44, 301–307.
    [Google Scholar]
  22. Landini, P. & Zehnder, A. J. ( 2002; ). The global regulatory hns gene negatively affects adhesion to solid surfaces by anaerobically grown Escherichia coli by modulating expression of flagella genes and lipopolysaccharide production. J Bacteriol 184, 1522–1529.[CrossRef]
    [Google Scholar]
  23. Lappin-Scott, H. M. & Bass, C. ( 2001; ). Biofilm formation: attachment, growth and detachment of microbes from surfaces. Am J Infect Control 29, 250–261.[CrossRef]
    [Google Scholar]
  24. Lazzaroni, J. C., Germon, P., Ray, M. C. & Vianney, A. ( 1999; ). The Tol proteins of Escherichia coli and their involvement in the uptake of biomolecules and outer membrane stability. FEMS Microbiol Lett 177, 191–197.[CrossRef]
    [Google Scholar]
  25. Llamas, M. A., Rodríguez-Herva, J. J., Hancock, R. E. W., Bitter, W., Tommassen, J. & Ramos, J. L. ( 2003; ). Role of Pseudomonas putida tol-oprL gene products in uptake of solutes through the cytoplasmic membrane. J Bacteriol 185, 4707–4716.[CrossRef]
    [Google Scholar]
  26. Lloubes, R., Cascales, E., Walburger, A., Bouveret, E., Lazdunski, C., Bernadac, A. & Journet, L. ( 2001; ). The Tol-Pal proteins of the Escherichia coli cell envelope: an energized system required for outer membrane integrity? Res Microbiol 152, 523–529.[CrossRef]
    [Google Scholar]
  27. Meyer, U. & Dewey, F. M. ( 2000; ). Efficacy of different immunogens for raising monoclonal antibodies to Botrytis cinerea. Mycol Res 104, 979–987.[CrossRef]
    [Google Scholar]
  28. Mireles, J. R., Toguchi, A. & Harshey, R. M. ( 2001; ). Salmonella enterica serovar typhimurium swarming mutants with altered biofilm-forming abilities: surfactin inhibits biofilm formation. J Bacteriol 183, 5848–5854.[CrossRef]
    [Google Scholar]
  29. Morris, C. E. & Monier, J.-M. ( 2003; ). The ecological signifcance of biofilm formation by plant-associated bacteria. Annu Rev Phytopathol 41, 429–453.[CrossRef]
    [Google Scholar]
  30. Nesper, J., Lauriano, C. M., Klose, K. E., Kapfhammer, D., Kraiss, A. & Reidl, J. ( 2001; ). Characterization of Vibrio cholerae O1 El tor galU and galE mutants: influence on lipopolysaccharide structure, colonization, and biofilm formation. Infect Immun 69, 435–445.[CrossRef]
    [Google Scholar]
  31. Okamura-Ikeda, K., Ohmura, Y., Fujiwara, K. & Motokawa, Y. ( 1993; ). Cloning and nucleotide sequence of the gcv operon encoding the Escherichia coli glycine-cleavage system. Eur J Biochem 216, 539–548.[CrossRef]
    [Google Scholar]
  32. Rainey, P. B. ( 1999; ). Adaptation of Pseudomonas fluorescens to the plant rhizosphere. Environ Microbiol 1, 243–257.[CrossRef]
    [Google Scholar]
  33. Rainey, P. B. & Bailey, M. J. ( 1996; ). Physical map of the Pseudomonas fluorescens SBW25 chromosome. Mol Microbiol 19, 521–533.[CrossRef]
    [Google Scholar]
  34. Rainey, P. B. & Travisano, M. ( 1998; ). Adaptive radiation in a heterogeneous environment. Nature 394, 69–72.[CrossRef]
    [Google Scholar]
  35. Rainey, P. B. & Rainey, K. ( 2003; ). Evolution of cooperation and conflict in experimental bacterial populations. Nature 425, 72–74.[CrossRef]
    [Google Scholar]
  36. Rashid, M. H., Rajanna, C., Ali, A. & Karaolis, D. K. ( 2003; ). Identification of genes involved in the switch between the smooth and rugose phenotypes of Vibrio cholerae. FEMS Microbiol Lett 227, 113–119.[CrossRef]
    [Google Scholar]
  37. Reuhs, B. L., Geller, D. P., Kim, J. S., Fox, J. E., Kolli, V. S. K. & Pueppke, S. G. ( 1998; ). Sinorhizobium fredii and Sinorhizobium meliloti produce structurally conserved lipopolysaccharides and strain-specific K antigens. Appl Environ Microbiol 64, 4930–4938.
    [Google Scholar]
  38. Rocchetta, H. L., Burrows, L. L. & Lam, J. S. ( 1999; ). Genetics of O-antigen biosynthesis in Pseudomonas aeruginosa. Microbiol Mol Biol Rev 63, 523–553.
    [Google Scholar]
  39. Römling, U. & Rohde, M. ( 1999; ). Flagella modulate the multicellular behaviour of Salmonella typhimurium on the community level. FEMS Microbiol Lett 180, 91–102.[CrossRef]
    [Google Scholar]
  40. Simon, R., Priefer, U. & Puhler, A. ( 1983; ). A broad host range mobilisation system for in vivo genetic engineering: random and site-specific transposon mutagenesis in gram-negative bacteria. Biotechnology 1, 784–791.[CrossRef]
    [Google Scholar]
  41. Solano, C., Garcia, B., Valle, J., Berasain, C., Ghigo, J.-M., Gamazo, C. & Lasa, I. ( 2002; ). Genetic analysis of Salmonella enteritidis biofilm formation: critical role of cellulose. Mol Microbiol 43, 793–808.[CrossRef]
    [Google Scholar]
  42. Spiers, A. J., Kahn, S. G., Travisano, M., Bohannon, J. & Rainey, P. B. ( 2002; ). Adaptive divergence in experimental populations of Pseudomonas fluorescens. 1. Genetic and phenotypic bases of wrinkly spreader fitness. Genetics 161, 33–46.
    [Google Scholar]
  43. Spiers, A. J., Bohannon, J., Gehrig, S. & Rainey, P. B. ( 2003; ). Colonisation of the air-liquid interface by the Pseudomonas fluorescens SBW25 wrinkly spreader requires an acetylated form of cellulose. Mol Microbiol 50, 15–27.[CrossRef]
    [Google Scholar]
  44. Stoodley, P., Sauer, K., Davies, D. G. & Costerton, J. W. ( 2002; ). Biofilms as complex differentiated communities. Annu Rev Microbiol 56, 187–209.[CrossRef]
    [Google Scholar]
  45. Sturgis, J. N. ( 2001; ). Organisation and evolution of the tol-pal gene cluster. J Mol Microbiol Biotechnol 3, 113–122.
    [Google Scholar]
  46. Sutherland, I. W. ( 2001a; ). The biofilm matrix – an immobilized but dynamic microbial environment. Trends Microbiol 9, 222–227.[CrossRef]
    [Google Scholar]
  47. Sutherland, I. W. ( 2001b; ). Biofilm exopolysaccharides: a strong and sticky framework. Microbiology 147, 3–9.
    [Google Scholar]
  48. Van der Mei, H. C. & Busscher, H. J. ( 2001; ). Electrophoretic mobility distributions of single-strain microbial populations. Appl Environ Microbiol 67, 491–494.[CrossRef]
    [Google Scholar]
  49. White, A. P., Gibson, D. L., Collinson, S. K., Banser, P. A. & Kay, W. W. ( 2003; ). Extracellular polysaccharides associated with thin aggregative fimbriae of Salmonella enterica serovar enteritidis. J Bacteriol 185, 5398–5407.[CrossRef]
    [Google Scholar]
  50. Wilson, M. ( 2001; ). Bacterial biofilms and human disease. Sci Prog 84, 235–254.[CrossRef]
    [Google Scholar]
  51. Wimpenny, J., Manz, W. & Szewzyk, U. ( 2000; ). Heterogeneity in biofilms. FEMS Microbiol Rev 24, 661–671.[CrossRef]
    [Google Scholar]
  52. Zogaj, X., Nimtz, M., Rohde, M., Bokranz, W. & Römling, U. ( 2001; ). The multicellular morphotypes of Salmonella typhimurium and Escherichia coli produce cellulose as the second component of the extracellular matrix. Mol Microbiol 39, 1452–1463.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.27984-0
Loading
/content/journal/micro/10.1099/mic.0.27984-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error