1887

Abstract

Activation of bacteriophage T4 middle promoters, which occurs about 1 min after infection, uses two phage-encoded factors that change the promoter specificity of the host RNA polymerase. These phage factors, the MotA activator and the AsiA co-activator, interact with the specificity subunit of RNA polymerase, which normally contacts the −10 and −35 regions of host promoter DNA. Like host promoters, T4 middle promoters have a good match to the canonical DNA element located in the −10 region. However, instead of the DNA recognition element in the promoter's −35 region, they have a 9 bp sequence (a MotA box) centred at −30, which is bound by MotA. Recent work has begun to provide information about the MotA/AsiA system at a detailed molecular level. Accumulated evidence suggests that the presence of MotA and AsiA reconfigures protein–DNA contacts in the upstream promoter sequences, without significantly affecting the contacts of with the −10 region. This type of activation, which is called ‘ appropriation’, is fundamentally different from other well-characterized models of prokaryotic activation in which an activator frequently serves to force to contact a less than ideal −35 DNA element. This review summarizes the interactions of AsiA and MotA with , and discusses how these interactions accomplish the switch to T4 middle promoters by inhibiting the typical contacts of the C-terminal region of , region 4, with the host −35 DNA element and with other subunits of polymerase.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.27972-0
2005-06-01
2019-10-23
Loading full text...

Full text loading...

/deliver/fulltext/micro/151/6/mic1511729.html?itemId=/content/journal/micro/10.1099/mic.0.27972-0&mimeType=html&fmt=ahah

References

  1. Adelman, K., Orsini, G., Kolb, A., Graziani, L. & Brody, E. N. ( 1997; ). The interaction between the AsiA protein of bacteriophage T4 and the sigma70 subunit of Escherichia coli RNA polymerase. J Biol Chem 272, 27435–27443.[CrossRef]
    [Google Scholar]
  2. Albright, S. R. & Tjian, R. ( 2000; ). TAFs revisited: more data reveal new twists and confirm old ideas. Gene 242, 1–13.[CrossRef]
    [Google Scholar]
  3. Barnard, A., Wolfe, A. & Busby, S. ( 2004; ). Regulation at complex bacterial promoters: how bacteria use different promoter organizations to produce different regulatory outcomes. Curr Opin Microbiol 7, 102–108.[CrossRef]
    [Google Scholar]
  4. Barne, K. A., Bown, J. A., Busby, S. J. & Minchin, S. D. ( 1997; ). Region 2.5 of the Escherichia coli RNA polymerase sigma70 subunit is responsible for the recognition of the ‘extended −10’ motif at promoters. EMBO J 16, 4034–4040.[CrossRef]
    [Google Scholar]
  5. Bown, J. A., Barne, K. A., Minchin, S. D. & Busby, S. J. W. ( 1997; ). Extended −10 promoters. In Nucleic Acids and Molecular Biology Mechanisms of Transcription, pp. 41–52. Edited by F. Eckstein & D. M. J. Lilley. New York: Springer.
  6. Brody, E., Rabussay, D. & Hall, D. ( 1983; ). Regulation of transcription of prereplicative genes. In Bacteriophage T4, pp. 174–183. Edited by C. K. Mathews, E. M. Kutter, G. Mosig & P. B. Berget. Washington, DC: American Society for Microbiology.
  7. Brody, E. N., Kassavetis, G. A., Ouhammouch, M., Sanders, G. M., Tinker, R. L. & Geiduschek, E. P. ( 1995; ). Old phage, new insights: two recently recognized mechanisms of transcriptional regulation in bacteriophage T4 development. FEMS Microbiol Lett 128, 1–8.[CrossRef]
    [Google Scholar]
  8. Campbell, E. A., Muzzin, O., Chlenov, M., Sun, J. L., Olson, C. A., Weinman, O., Trester-Zedlitz, M. L. & Darst, S. A. ( 2002; ). Structure of the bacterial RNA polymerase promoter specificity sigma subunit. Mol Cell 9, 527–539.[CrossRef]
    [Google Scholar]
  9. Carlson, K., Raleigh, A. & Hattman, S. ( 1994; ). Restriction and modification. In Molecular Biology of Bacteriophage T4, pp. 369–381. Edited by J. D. Karam and others. Washington, DC: American Society for Microbiology.
  10. Chen, B. S. & Hampsey, M. ( 2002; ). Transcription activation: unveiling the essential nature of TFIID. Curr Biol 12, 620–622.[CrossRef]
    [Google Scholar]
  11. Cicero, M. P., Alexander, K. A. & Kreuzer, K. N. ( 1998; ). The MotA transcriptional activator of bacteriophage T4 binds to its specific DNA site as a monomer. Biochemistry 37, 4977–4984.[CrossRef]
    [Google Scholar]
  12. Cicero, M. P., Sharp, M. M., Gross, C. A. & Kreuzer, K. N. ( 2001; ). Substitutions in bacteriophage T4 AsiA and Escherichia coli sigma(70) that suppress T4 motA activation mutations. J Bacteriol 183, 2289–2297.[CrossRef]
    [Google Scholar]
  13. Colland, F., Orsini, G., Brody, E. N., Buc, H. & Kolb, A. ( 1998; ). The bacteriophage T4 AsiA protein: a molecular switch for sigma 70-dependent promoters. Mol Microbiol 27, 819–829.[CrossRef]
    [Google Scholar]
  14. Deretic, V. & Konyecsni, W. M. ( 1989; ). Control of mucoidy in Pseudomonas aeruginosa: transcriptional regulation of algR and identification of the second regulatory gene, algQ. J Bacteriol 171, 3680–3688.
    [Google Scholar]
  15. Dove, S. L. & Hochschild, A. ( 2001; ). Bacterial two-hybrid analysis of interactions between region 4 of the sigma(70) subunit of RNA polymerase and the transcriptional regulators Rsd from Escherichia coli and AlgQ from Pseudomonas aeruginosa. J Bacteriol 183, 6413–6421.[CrossRef]
    [Google Scholar]
  16. Finnin, M. S., Cicero, M. P., Davies, C., Porter, S. J., White, S. W. & Kreuzer, K. N. ( 1997; ). The activation domain of the MotA transcription factor from bacteriophage T4. EMBO J 16, 1992–2003.[CrossRef]
    [Google Scholar]
  17. Gardella, T., Moyle, H. & Susskind, M. M. ( 1989; ). A mutant Escherichia coli sigma 70 subunit of RNA polymerase with altered promoter specificity. J Mol Biol 206, 579–590.[CrossRef]
    [Google Scholar]
  18. Gerber, J. S. & Hinton, D. M. ( 1996; ). An N-terminal mutation in the bacteriophage T4 motA gene yields a protein that binds DNA but is defective for activation of transcription. J Bacteriol 178, 6133–6139.
    [Google Scholar]
  19. Gregory, B. D., Nickels, B. E., Garrity, S. J. & 7 other authors ( 2004; ). A regulator that inhibits transcription by targeting an intersubunit interaction of the RNA polymerase holoenzyme. Proc Natl Acad Sci U S A 101, 4554–4559.[CrossRef]
    [Google Scholar]
  20. Gregory, B. D., Nickels, B. E., Darst, S. A. & Hochschild, A. ( 2005; ). An altered-specificity DNA-binding mutant of E. coli σ 70 facilitates the analysis of σ 70 function in vivo. Mol Microbiol (in press).
    [Google Scholar]
  21. Gruber, T. M. & Gross, C. A. ( 2003; ). Multiple sigma subunits and the partitioning of bacterial transcription space. Annu Rev Microbiol 57, 441–466.[CrossRef]
    [Google Scholar]
  22. Guild, N., Gayle, M., Sweeney, R., Hollingsworth, T., Modeer, T. & Gold, L. ( 1988; ). Transcriptional activation of bacteriophage T4 middle promoters by the motA protein. J Mol Biol 199, 241–258.[CrossRef]
    [Google Scholar]
  23. Hinton, D. M. ( 1991; ). Transcription from a bacteriophage T4 middle promoter using T4 MotA protein and phage-modified RNA polymerase. J Biol Chem 266, 18034–18044.
    [Google Scholar]
  24. Hinton, D. M. & Vuthoori, S. ( 2000; ). Efficient inhibition of Escherichia coli RNA polymerase by the bacteriophage T4 AsiA protein requires that AsiA binds first to free sigma70. J Mol Biol 304, 731–739.[CrossRef]
    [Google Scholar]
  25. Hinton, D. M., March-Amegadzie, R., Gerber, J. S. & Sharma, M. ( 1996a; ). Characterization of pre-transcription complexes made at a bacteriophage T4 middle promoter: involvement of the T4 MotA activator and the T4 AsiA protein, a sigma 70 binding protein, in the formation of the open complex. J Mol Biol 256, 235–248.[CrossRef]
    [Google Scholar]
  26. Hinton, D. M., March-Amegadzie, R., Gerber, J. S. & Sharma, M. ( 1996b; ). Bacteriophage T4 middle transcription system: T4-modified RNA polymerase; AsiA, a sigma 70 binding protein; and transcriptional activator MotA. Methods Enzymol 274, 43–57.
    [Google Scholar]
  27. Jishage, M. & Ishihama, A. ( 1998; ). A stationary phase protein in Escherichia coli with binding activity to the major sigma subunit of RNA polymerase. Proc Natl Acad Sci U S A 95, 4953–4958.[CrossRef]
    [Google Scholar]
  28. Jishage, M., Dasgupta, D. & Ishihama, A. ( 2001; ). Mapping of the Rsd contact site on the sigma 70 subunit of Escherichia coli RNA polymerase. J Bacteriol 183, 2952–2956.[CrossRef]
    [Google Scholar]
  29. Keener, J. & Nomura, M. ( 1993; ). Dominant lethal phenotype of a mutation in the −35 recognition region of Escherichia coli sigma 70. Proc Natl Acad Sci U S A 90, 1751–1755.[CrossRef]
    [Google Scholar]
  30. Kolesky, S. E., Ouhammouch, M. & Geiduschek, E. P. ( 2002; ). The mechanism of transcriptional activation by the topologically DNA-linked sliding clamp of bacteriophage T4. J Mol Biol 321, 767–784.[CrossRef]
    [Google Scholar]
  31. Kuznedelov, K., Minakhin, L., Niedziela-Majka, A., Dove, S. L., Rogulja, D., Nickels, B. E., Hochschild, A., Heyduk, T. & Severinov, K. ( 2002; ). A role for interaction of the RNA polymerase flap domain with the sigma subunit in promoter recognition. Science 295, 855–857.[CrossRef]
    [Google Scholar]
  32. Lambert, L. J., Schirf, V., Demeler, B., Cadene, M. & Werner, M. H. ( 2001; ). Flipping a genetic switch by subunit exchange. EMBO J 20, 7149–7159.[CrossRef]
    [Google Scholar]
  33. Lambert, L. J., Schirf, V., Demeler, B., Cadene, M. & Werner, M. H. ( 2004a; ). Flipping a genetic switch by subunit exchange [correction]. EMBO J 23, 3186.[CrossRef]
    [Google Scholar]
  34. Lambert, L. J., Wei, Y., Schirf, V., Demeler, B. & Werner, M. H. ( 2004b; ). T4 AsiA blocks DNA recognition by remodeling sigma(70) region 4. EMBO J 23, 2952–2962.[CrossRef]
    [Google Scholar]
  35. Landini, P. & Busby, S. J. ( 1999; ). The Escherichia coli Ada protein can interact with two distinct determinants in the sigma70 subunit of RNA polymerase according to promoter architecture: identification of the target of Ada activation at the alkA promoter. J Bacteriol 181, 1524–1529.
    [Google Scholar]
  36. Li, N., Zhang, W., White, S. W. & Kriwacki, R. W. ( 2001; ). Solution structure of the transcriptional activation domain of the bacteriophage T4 protein, MotA. Biochemistry 40, 4293–4302.[CrossRef]
    [Google Scholar]
  37. Li, N., Sickmier, E. A., Zhang, R., Joachimiak, A. & White, S. W. ( 2002; ). The MotA transcription factor from bacteriophage T4 contains a novel DNA-binding domain: the ‘double wing’ motif. Mol Microbiol 43, 1079–1088.[CrossRef]
    [Google Scholar]
  38. Lonetto, M., Gribskov, M. & Gross, C. A. ( 1992; ). The sigma 70 family: sequence conservation and evolutionary relationships. J Bacteriol 174, 3843–3849.
    [Google Scholar]
  39. Lonetto, M. A., Rhodius, V., Lamberg, K., Kiley, P., Busby, S. & Gross, C. ( 1998; ). Identification of a contact site for different transcription activators in region 4 of the Escherichia coli RNA polymerase sigma70 subunit. J Mol Biol 284, 1353–1365.[CrossRef]
    [Google Scholar]
  40. Marshall, P., Sharma, M. & Hinton, D. M. ( 1999; ). The bacteriophage T4 transcriptional activator MotA accepts various base-pair changes within its binding sequence. J Mol Biol 285, 931–944.[CrossRef]
    [Google Scholar]
  41. Mattson, T., Richardson, J. & Goodin, D. ( 1974; ). Mutant of bacteriophage T4D affecting expression of many early genes. Nature 250, 48–50.[CrossRef]
    [Google Scholar]
  42. Mattson, T., Van Houwe, G. & Epstein, R. H. ( 1978; ). Isolation and characterization of conditional lethal mutations in the mot gene of bacteriophage T4. J Mol Biol 126, 551–570.[CrossRef]
    [Google Scholar]
  43. Mekler, V., Kortkhonjia, E., Mukhopadhyay, J. & 7 other authors ( 2002; ). Structural organization of bacterial RNA polymerase holoenzyme and the RNA polymerase-promoter open complex. Cell 108, 599–614.[CrossRef]
    [Google Scholar]
  44. Miller, E. S., Kutter, E., Mosig, G., Arisaka, F., Kunisawa, T. & Ruger, W. ( 2003; ). Bacteriophage T4 genome. Microbiol Mol Biol Rev 67, 86–156.[CrossRef]
    [Google Scholar]
  45. Minakhin, L., Camarero, J. A., Holford, M., Parker, C., Muir, T. W. & Severinov, K. ( 2001; ). Mapping the molecular interface between the sigma(70) subunit of E. coli RNA polymerase and T4 AsiA. J Mol Biol 306, 631–642.[CrossRef]
    [Google Scholar]
  46. Minakhin, L., Niedziela-Majka, A., Kuznedelov, K., Adelman, K., Urbauer, J. L., Heyduk, T. & Severinov, K. ( 2003; ). Interaction of T4 AsiA with its target sites in the RNA polymerase sigma70 subunit leads to distinct and opposite effects on transcription. J Mol Biol 326, 679–690.[CrossRef]
    [Google Scholar]
  47. Moarefi, I., Jeruzalmi, D., Turner, J., O'Donnell, M. & Kuriyan, J. ( 2000; ). Crystal structure of the DNA polymerase processivity factor of T4 bacteriophage. J Mol Biol 296, 1215–1223.[CrossRef]
    [Google Scholar]
  48. Murakami, K. S., Masuda, S., Campbell, E. A., Muzzin, O. & Darst, S. A. ( 2002a; ). Structural basis of transcription initiation: an RNA polymerase holoenzyme-DNA complex. Science 296, 1285–1290.[CrossRef]
    [Google Scholar]
  49. Murakami, K. S., Masuda, S. & Darst, S. A. ( 2002b; ). Structural basis of transcription initiation: RNA polymerase holoenzyme at 4 Å resolution. Science 296, 1280–1284.[CrossRef]
    [Google Scholar]
  50. Nechaev, S., Kamali-Moghaddam, M., Andre, E., Leonetti, J. P. & Geiduschek, E. P. ( 2004; ). The bacteriophage T4 late-transcription coactivator gp33 binds the flap domain of Escherichia coli RNA polymerase. Proc Natl Acad Sci U S A 101, 17365–17370.[CrossRef]
    [Google Scholar]
  51. Nickels, B. E., Dove, S. L., Murakami, K. S., Darst, S. A. & Hochschild, A. ( 2002; ). Protein-protein and protein-DNA interactions of sigma(70) region 4 involved in transcription activation by lambda cI. J Mol Biol 324, 17–34.[CrossRef]
    [Google Scholar]
  52. Nickels, B. E., Garrity, S. J., Mekler, V., Minakhin, L., Severinov, K., Ebright, R. H. & Hochschild, A. ( 2005; ). The interaction between sigma(70) and the beta-flap of Escherichia coli RNA polymerase inhibits extension of nascent RNA during early elongation. Proc Natl Acad Sci U S A 102, 4488–4493.[CrossRef]
    [Google Scholar]
  53. Nossal, N. G. ( 1992; ). Protein-protein interactions at a DNA replication fork: bacteriophage T4 as a model. FASEB J 6, 871–878.
    [Google Scholar]
  54. Orsini, G., Kolb, A. & Buc, H. ( 2001; ). The Escherichia coli RNA polymerase anti-sigma 70 AsiA complex utilizes alpha-carboxyl-terminal domain upstream promoter contacts to transcribe from a −10/−35 promoter. J Biol Chem 276, 19812–19819.[CrossRef]
    [Google Scholar]
  55. Orsini, G., Igonet, S., Pene, C., Sclavi, B., Buckle, M., Uzan, M. & Kolb, A. ( 2004; ). Phage T4 early promoters are resistant to inhibition by the anti-sigma factor AsiA. Mol Microbiol 52, 1013–1028.[CrossRef]
    [Google Scholar]
  56. Ouhammouch, M., Orsini, G. & Brody, E. N. ( 1994; ). The asiA gene product of bacteriophage T4 is required for middle mode RNA synthesis. J Bacteriol 176, 3956–3965.
    [Google Scholar]
  57. Ouhammouch, M., Adelman, K., Harvey, S. R., Orsini, G. & Brody, E. N. ( 1995; ). Bacteriophage T4 MotA and AsiA proteins suffice to direct Escherichia coli RNA polymerase to initiate transcription at T4 middle promoters. Proc Natl Acad Sci U S A 92, 1451–1455.[CrossRef]
    [Google Scholar]
  58. Paget, M. S. & Helmann, J. D. ( 2003; ). The sigma70 family of sigma factors. Genome Biol 4, 203 (doi:10·1186/gb-2003-4-1-203).[CrossRef]
    [Google Scholar]
  59. Pahari, S. & Chatterji, D. ( 1997; ). Interaction of bacteriophage T4 AsiA protein with Escherichia coli sigma(70) and its variant. FEBS Lett 411, 60–62.[CrossRef]
    [Google Scholar]
  60. Pal, D., Vuthoori, M., Pande, S., Wheeler, D. & Hinton, D. M. ( 2003; ). Analysis of regions within the bacteriophage T4 AsiA protein involved in its binding to the sigma(70) subunit of E. coli RNA polymerase and its role as a transcriptional inhibitor and co-activator. J Mol Biol 325, 827–841.[CrossRef]
    [Google Scholar]
  61. Pande, S., Makela, A., Dove, S. L., Nickels, B. E., Hochschild, A. & Hinton, D. M. ( 2002; ). The bacteriophage T4 transcription activator MotA interacts with the far-C-terminal region of the sigma(70) subunit of Escherichia coli RNA polymerase. J Bacteriol 184, 3957–3964.[CrossRef]
    [Google Scholar]
  62. Pene, C. & Uzan, M. ( 2000; ). The bacteriophage T4 anti-sigma factor AsiA is not necessary for the inhibition of early promoters in vivo. Mol Microbiol 35, 1180–1191.[CrossRef]
    [Google Scholar]
  63. Pineda, M., Gregory, B. D., Szczypinski, B., Baxter, K. R., Hochschild, A., Miller, E. S. & Hinton, D. M. ( 2004; ). A family of anti-sigma70 proteins in T4-type phages and bacteria that are similar to AsiA, a transcription inhibitor and co-activator of bacteriophage T4. J Mol Biol 344, 1183–1197.[CrossRef]
    [Google Scholar]
  64. Rhodius, V. A. & Busby, S. J. ( 2000; ). Interactions between activating region 3 of the Escherichia coli cyclic AMP receptor protein and region 4 of the RNA polymerase sigma(70) subunit: application of suppression genetics. J Mol Biol 299, 311–324.[CrossRef]
    [Google Scholar]
  65. Ross, W. & Gourse, R. L. ( 2005; ). Sequence-independent upstream DNA-alphaCTD interactions strongly stimulate Escherichia coli RNA polymerase-lacUV5 promoter association. Proc Natl Acad Sci U S A 102, 291–296.[CrossRef]
    [Google Scholar]
  66. Ross, W., Ernst, A. & Gourse, R. L. ( 2001; ). Fine structure of E. coli RNA polymerase-promoter interactions: alpha subunit binding to the UP element minor groove. Genes Dev 15, 491–506.[CrossRef]
    [Google Scholar]
  67. Sanderson, A., Mitchell, J. E., Minchin, S. D. & Busby, S. J. ( 2003; ). Substitutions in the Escherichia coli RNA polymerase sigma70 factor that affect recognition of extended −10 elements at promoters. FEBS Lett 544, 199–205.[CrossRef]
    [Google Scholar]
  68. Schmidt, R. P. & Kreuzer, K. N. ( 1992; ). Purified MotA protein binds the −30 region of a bacteriophage T4 middle-mode promoter and activates transcription in vitro. J Biol Chem 267, 11399–11407.
    [Google Scholar]
  69. Severinov, K. & Muir, T. W. ( 1998; ). Expressed protein ligation, a novel method for studying protein-protein interactions in transcription. J Biol Chem 273, 16205–16209.[CrossRef]
    [Google Scholar]
  70. Severinova, E., Severinov, K., Fenyo, D., Marr, M., Brody, E. N., Roberts, J. W., Chait, B. T. & Darst, S. A. ( 1996; ). Domain organization of the Escherichia coli RNA polymerase sigma 70 subunit. J Mol Biol 263, 637–647.[CrossRef]
    [Google Scholar]
  71. Severinova, E., Severinov, K. & Darst, S. A. ( 1998; ). Inhibition of Escherichia coli RNA polymerase by bacteriophage T4 AsiA. J Mol Biol 279, 9–18.[CrossRef]
    [Google Scholar]
  72. Sharma, M., Marshall, P. & Hinton, D. M. ( 1999a; ). Binding of the bacteriophage T4 transcriptional activator, MotA, to T4 middle promoter DNA: evidence for both major and minor groove contacts. J Mol Biol 290, 905–915.[CrossRef]
    [Google Scholar]
  73. Sharma, U. K., Ravishankar, S., Shandil, R. K., Praveen, P. V. & Balganesh, T. S. ( 1999b; ). Study of the interaction between bacteriophage T4 asiA and Escherichia coli sigma(70), using the yeast two-hybrid system: neutralization of asiA toxicity to E. coli cells by coexpression of a truncated sigma(70) fragment. J Bacteriol 181, 5855–5859.
    [Google Scholar]
  74. Sharma, U. K., Praveen, P. V. & Balganesh, T. S. ( 2002; ). Mutational analysis of bacteriophage T4 AsiA: involvement of N- and C-terminal regions in binding to sigma(70) of Escherichia coli in vivo. Gene 295, 125–134.[CrossRef]
    [Google Scholar]
  75. Siegele, D. A., Hu, J. C., Walter, W. A. & Gross, C. A. ( 1989; ). Altered promoter recognition by mutant forms of the sigma 70 subunit of Escherichia coli RNA polymerase. J Mol Biol 206, 591–603.[CrossRef]
    [Google Scholar]
  76. Simeonov, M. F., Bieber Urbauer, R. J., Gilmore, J. M., Adelman, K., Brody, E. N., Niedziela-Majka, A., Minakhin, L., Heyduk, T. & Urbauer, J. L. ( 2003; ). Characterization of the interactions between the bacteriophage T4 AsiA protein and RNA polymerase. Biochemistry 42, 7717–7726.[CrossRef]
    [Google Scholar]
  77. Sommer, N., Salniene, V., Gineikiene, E., Nivinskas, R. & Ruger, W. ( 2000; ). T4 early promoter strength probed in vivo with unribosylated and ADP-ribosylated Escherichia coli RNA polymerase: a mutation analysis. Microbiology 146, 2643–2653.
    [Google Scholar]
  78. Stevens, A. ( 1972; ). New small polypeptides associated with DNA-dependent RNA polymerase of Escherichia coli after infection with bacteriophage T4. Proc Natl Acad Sci U S A 69, 603–607.[CrossRef]
    [Google Scholar]
  79. Stevens, A. ( 1973; ). An inhibitor of host sigma-stimulated core enzyme activity that purifies with DNA-dependent RNA polymerase of E. coli following T4 phage infection. Biochem Biophys Res Commun 54, 488–493.[CrossRef]
    [Google Scholar]
  80. Stevens, A. & Rhoton, J. C. ( 1975; ). Characterization of an inhibitor causing potassium chloride sensitivity of an RNA polymerase from T4 phage-infected Escherichia coli. Biochemistry 14, 5074–5079.[CrossRef]
    [Google Scholar]
  81. Stitt, B. & Hinton, D. M. ( 1994; ). Regulation of middle-mode transcription. In Molecular Biology of Bacteriophage T4, pp. 142–160. Edited by J. D. Karam and others. Washington, DC: American Society for Microbiology.
  82. Tiemann, B., Depping, R., Gineikiene, E., Kaliniene, L., Nivinskas, R. & Ruger, W. ( 2004; ). ModA and ModB, two ADP-ribosyltransferases encoded by bacteriophage T4: catalytic properties and mutation analysis. J Bacteriol 186, 7262–7272.[CrossRef]
    [Google Scholar]
  83. Truncaite, L., Zajanckauskaite, A. & Nivinskas, R. ( 2002; ). Identification of two middle promoters upstream DNA ligase gene 30 of bacteriophage T4. J Mol Biol 317, 179–190.[CrossRef]
    [Google Scholar]
  84. Truncaite, L., Piesiniene, L., Kolesinskiene, G., Zajanckauskaite, A., Driukas, A., Klausa, V. & Nivinskas, R. ( 2003; ). Twelve new MotA-dependent middle promoters of bacteriophage T4: consensus sequence revised. J Mol Biol 327, 335–346.[CrossRef]
    [Google Scholar]
  85. Urbauer, J. L., Adelman, K., Urbauer, R. J., Simeonov, M. F., Gilmore, J. M., Zolkiewski, M. & Brody, E. N. ( 2001; ). Conserved regions 4.1 and 4.2 of sigma(70) constitute the recognition sites for the anti-sigma factor AsiA, and AsiA is a dimer free in solution. J Biol Chem 276, 41128–41132.[CrossRef]
    [Google Scholar]
  86. Urbauer, J. L., Simeonov, M. F., Urbauer, R. J., Adelman, K., Gilmore, J. M. & Brody, E. N. ( 2002; ). Solution structure and stability of the anti-sigma factor AsiA: implications for novel functions. Proc Natl Acad Sci U S A 99, 1831–1835.[CrossRef]
    [Google Scholar]
  87. Vassylyev, D. G., Sekine, S., Laptenko, O., Lee, J., Vassylyeva, M. N., Borukhov, S. & Yokoyama, S. ( 2002; ). Crystal structure of a bacterial RNA polymerase holoenzyme at 2·6 Å resolution. Nature 417, 712–719.[CrossRef]
    [Google Scholar]
  88. Waldburger, C., Gardella, T., Wong, R. & Susskind, M. M. ( 1990; ). Changes in conserved region 2 of Escherichia coli sigma 70 affecting promoter recognition. J Mol Biol 215, 267–276.[CrossRef]
    [Google Scholar]
  89. Westblade, L. F., Ilag, L. L., Powell, A. K., Kolb, A., Robinson, C. V. & Busby, S. J. ( 2004; ). Studies of the Escherichia coli Rsd-sigma70 complex. J Mol Biol 335, 685–692.[CrossRef]
    [Google Scholar]
  90. Wilkens, K. & Ruger, W. ( 1996; ). Characterization of bacteriophage T4 early promoters in vivo with a new promoter probe vector. Plasmid 35, 108–120.[CrossRef]
    [Google Scholar]
  91. Wilkens, K., Tiemann, B., Bazan, F. & Ruger, W. ( 1997; ). ADP-ribosylation and early transcription regulation by bacteriophage T4. Adv Exp Med Biol 419, 71–82.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.27972-0
Loading
/content/journal/micro/10.1099/mic.0.27972-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error