1887

Abstract

The plasmids from 16 sphingomonads which degrade various xenobiotics and polycyclic aromatic compounds were compared with the previously sequenced plasmid pNL1 from F199. The replicase genes from plasmid pNL1 were amplified by PCR and used as a gene probe for the identification of plasmids belonging to the same incompatibility group as plasmid pNL1. Plasmids were prepared from various sphingomonads and hybridized with the gene probe. Positive hybridization signals were obtained with plasmids of approximately 160–195 kb from and B0695, which had been isolated from the same subsurface location as F199. The probe also hybridized with plasmids from BN6, sp. HH69 and , which had been isolated from different continents and which utilize different organic compounds than F199 and the other subsurface strains. The results of the hybridization experiments were confirmed by PCR experiments using primers deduced from the region of plasmid pNL1. Nucleotide sequence comparisons suggested that three gene clusters were conserved between plasmid pNL1 and plasmid pBN6 from the naphthalenesulfonate- degrading strain BN6. From these sequence comparisons, PCR primers were derived in order to detect the respective gene clusters in the other strains and to deduce their position relative to each other. These experiments demonstrated that all analysed subsurface strains harboured the same three gene clusters, but that the position and distance from each other of the clusters varied considerably among the different strains.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.27965-0
2005-06-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/151/6/mic1512025.html?itemId=/content/journal/micro/10.1099/mic.0.27965-0&mimeType=html&fmt=ahah

References

  1. Armengaud J., Happe B., Timmis K. N. 1998; Genetic analysis of dioxin dioxygenase of Sphingomonas sp. RW1: catabolic genes dispersed on the genome. J Bacteriol 180:3954–3966
    [Google Scholar]
  2. Atlas R. M. 1995 Handbook of Microbiological Media for Environmental Microbiology Boca Raton, FL: CRC Press;
    [Google Scholar]
  3. Balkwill D. L., Drake G. R., Reeves R. H. 7 other authors 1997; Taxonomic study of aromatic-degrading bacteria from deep-terrestrial-subsurface sediments and description of Sphingomonas aromaticivorans sp.nov., Sphingomonas subterranea sp. nov., and Sphingomonas stygia sp. nov. Int J Syst Bacteriol 47:191–201 [CrossRef]
    [Google Scholar]
  4. Barton B. M., Hardening G. P., Zuccarelli A. J. 1995; A general method for detecting and sizing large plasmids. Anal Biochem 226:234–240
    [Google Scholar]
  5. Basta T., Keck A., Klein J., Stolz A. 2004; Detection and characterization of conjugative degradative plasmids in xenobiotics degrading Sphingomonas strains. J Bacteriol 186:3862–3872 [CrossRef]
    [Google Scholar]
  6. Bergeron H., Wang Y., Denis-Larose C., Patel A., Labbe D., Lau P. C. K. 1998; A fluoranthene degradative plasmid of Sphingomonas paucimobilis EPA505 also encodes genes for metal resistance. ASM General Meeting, PosterQ–288
    [Google Scholar]
  7. Cai M., Xun L. 2002; Organization and regulation of pentachlorophenol-degrading genes in Sphingobium chlorophenolicum ATCC 39723. J Bacteriol 184:4672–4680 [CrossRef]
    [Google Scholar]
  8. Cho J. C., Kim S. J. 2001; Detection of mega plasmid from polycyclic aromatic hydrocarbon-degrading Sphingomonas sp. strain KS14. J Mol Microbiol Biotechnol 3:503–506
    [Google Scholar]
  9. Couturier M., Francoise B., Bergquist P. L., Maas W. K. 1988; Identification and classification of bacterial plasmids. Microbiol Rev 52:375–395
    [Google Scholar]
  10. del Solar G., Giraldo R., Ruiz-Echevarria M. J., Espinosa M., Diaz-Orejas R. 1998; Replication and control of circular bacterial plasmids. Microbiol Mol Biol Rev 62:434–464
    [Google Scholar]
  11. Eulberg D., Golovleva L. A., Schlömann M. 1997; Characterization of catechol catabolic genes from Rhodococcus opacus 1CP. J Bacteriol 179:370–381
    [Google Scholar]
  12. Feng X., Ou L.-T., Ogram A. 1997; Plasmid-mediated mineralization of carbofuran by Sphingomonas sp. CF-06. Appl Environ Microbiol 63:1332–1337
    [Google Scholar]
  13. Fortnagel P., Harms H., Wittich R.-M., Krohn S., Meyer H., Sinnwell V., Wilkes H., Francke W. 1990; Metabolism of dibenzofuran by Pseudomonas sp. strain HH69 and the mixed culture HH27. Appl Environ Microbiol 56:1148–1156
    [Google Scholar]
  14. Fredrickson J. K., Balkwill D. L., Drake G. R., Romine M. F., Ringelberg D. B., White D. C. 1995; Aromatic-degrading Sphingomonas isolates from the deep surface. Appl Environ Microbiol 61:1917–1922
    [Google Scholar]
  15. Fredrickson J. K., Balkwill D. L., Romine M. F., Shi T. 1999; Ecology, physiology, and phylogeny of deep surface Sphingomonas strains. J Ind Microbiol Biotechnol 23:273–283 [CrossRef]
    [Google Scholar]
  16. Fujii K., Satomi M., Morita N., Motomura T., Tanaka T., Kikuchi S. 2003; Novosphingobium tardaugens sp. nov., an oestradiol-degrading bacterium isolated from activated sludge of a sewage treatment plant in Tokyo. Int J Syst Evol Microbiol 53:47–52 [CrossRef]
    [Google Scholar]
  17. Furukawa K., Hayase N., Taira K., Tomizuka N. 1989; Molecular relationship of chromosomal genes encoding biphenyl/polychlorinated biphenyl catabolism: some soil bacteria possess highly conserved bph operons. J Bacteriol 171:5467–5472
    [Google Scholar]
  18. Giraldo R., Andreu J. M., Diaz-Orejas R. 1998; Protein domains and conformational changes in the activation of RepA, a DNA replication initiator. EMBO J 17:4511–4526 [CrossRef]
    [Google Scholar]
  19. Harms H., Wilkes H., Wittich R.-M., Fortnagel P. 1995; Metabolism of hydroxydibenzofurans, methoxybenzofurans, acetoxydibenzofurans, and nitrodibenzofurans by Sphingomonas sp. HH69. Appl Environ Microbiol 61:2499–2505
    [Google Scholar]
  20. Hong H. B., Chang Y. S., Nam I. H., Fortnagel P., Schmidt S. 2002; Biotransformation of 2,7-dichloro- and 1,2,3,4-tetrachlorodibenzo-p-dioxin bySphingomonas wittichii RW1. Appl Environ Microbiol 68:2584–2588 [CrossRef]
    [Google Scholar]
  21. Keck A. 2000 Conversion of azo dyes by a redox mediator dependent mechanism which is linked to the naphthalenesulfonate degradation of Sphingomonas sp. strain BN6 Thesis Universität Stuttgart;
    [Google Scholar]
  22. Kilbane J. J. II, Daram A., Abbasian J., Kayser K. J. 2002; Isolation and characterization of Sphingomonas sp. GTIN11 capable of carbazole metabolism in petroleum. Biochem Biophys Res Commun 297:242–248 [CrossRef]
    [Google Scholar]
  23. Kim E., Aversano P. J., Romine M. F., Schneider R. P., Zylstra G. J. 1996; Homology between genes for aromatic hydrocarbon degradation in surface and deep-subsurface Sphingomonas strains. Appl Environ Microbiol 62:1467–1470
    [Google Scholar]
  24. Kim E., Zylstra G. J., Freeman J. P., Heinze T. M., Deck J., Cerniglia C. E. 1997; Evidence for the role of 2-hydroxychromene-2-carboxylate isomerase in the degradation of anthracene Sphingomonas yanoikuyae B1. FEMS Microbiol Lett 153:479–484 [CrossRef]
    [Google Scholar]
  25. Kuhm A. E., Knackmuss H.-J., Stolz A. 1993; 2-Hydroxychromene-2-carboxylate isomerase from bacteria that degrade naphthalenesulfonates. Biodegradation 4:155–162 [CrossRef]
    [Google Scholar]
  26. Kumari R., Subudhi S., Suar M. 7 other authors 2002; Cloning and characterization of lin genes responsible for the degradation of hexachlorocyclohexane isomers bySphingomonas paucimobilis strain B90. Appl Environ Microbiol 68:6021–6028 [CrossRef]
    [Google Scholar]
  27. Masai E., Shinohara S., Hara H., Nishikawa S., Katayama Y., Fukuda M. 1999; Genetic and biochemical characterization of a 2-pyrone-4,6-dicarboxylate acid hydrolase involved in the protocatechuate 4,5-cleavage pathway of Sphingomonas paucimobilis SYK-6. J Bacteriol 181:55–62
    [Google Scholar]
  28. Miyauchi K., Suh S.-K., Nagata Y., Takagi M. 1998; Cloning and sequencing of a 2,5-dichlorohydroquinone reductive dehalogenase gene whose product is involved in degradation of γ-hexachlorocyclohexane by Sphingomonas paucimobilis . J Bacteriol 180:1354–1359
    [Google Scholar]
  29. Mueller J. G., Devereux R., Santavy D. L., Lantz S. E., Willis S. G., Pritchard P. H. 1997; Phylogenetic and physiological comparison of PAH-degrading bacteria from geographically diverse soils. Antonie van Leeuwenhoek 71:329–343 [CrossRef]
    [Google Scholar]
  30. Nagata Y., Ohtomo R., Miyauchi K., Fukuda M., Yano K., Takagi M. 1994; Cloning and sequencing of a 2,5-dichloro-2,5-cyclohexadiene-1,4-diol dehydrogenase gene involved in the degradation of γ-hexachlorocyclohexane in Pseudomonas paucimobilis . J Bacteriol 176:3117–3125
    [Google Scholar]
  31. Nagata Y., Miyauchi M., Damborsky J., Manova K., Ansorgova A., Takagi M. 1997; Purification and characterization of a haloalkane dehalogenase of a new substrate class from a γ-hexachlorocyclohexane-degrading bacterium,Sphingomonas paucimobilis UT26. Appl Environ Microbiol 63:3707–3710
    [Google Scholar]
  32. Nohynek L. J., Suhonen E. L., Nurmiaho-Lassila E.-L., Hantula J., Salkinoja-Salonen M. 1995; Description of four pentachlorophenol-degrading bacterial strains as Sphingomonas chlorophenolica sp. nov. Syst Appl Microbiol 18:527–538 [CrossRef]
    [Google Scholar]
  33. Nohynek L. J., Nurmiaho-Lassila E.-L., Suhonen E. L., Busse H.-J., Mohammadi M., Hantula J., Rainey F., Salkinoja-Salonen M. 1996; Description of chlorophenol-degrading Pseudomonas sp. strains KF1, KF3, and NKF1 as a new species of the genus Sphingomonas,Sphingomonas subarctica sp. nov. Int J Syst Bacteriol 46:1042–1055 [CrossRef]
    [Google Scholar]
  34. Nörtemann B., Baumgarten J., Rast H. G., Knackmuss H.-J. 1986; Bacterial communities degrading amino- and hydroxynaphthalenesulfonates. Appl Environ Microbiol 52:1195–1202
    [Google Scholar]
  35. Ogram A. V., Duan Y.-P., Trabue S. L., Feng X., Castro H., Ou L.-T. 2000; Carbofuran degradation mediated by three related plasmid systems. FEMS Microbiol Ecol 32:197–203 [CrossRef]
    [Google Scholar]
  36. Pinyakong O., Habe H., Omori T. 2003; The unique aromatic catabolic genes in sphingomonads degrading polycyclic aromatic hydrocarbons. J Gen Appl Microbiol 49:1–9 [CrossRef]
    [Google Scholar]
  37. Romine M. F., Stillwell L. C., Wong K.-K., Thurston S. J., Sisk E. C., Sensen C., Gaasterland T., Fredrickson J. K., Saffer J. D. 1999; Complete sequence of a 184-kilobase catabolic plasmid from Sphingomonas aromaticivorans F199. J Bacteriol 181:1585–1602
    [Google Scholar]
  38. Sabaté J., Viñas M., Bayona J. M., Solanas A. M. 2003; Isolation and taxonomic and catabolic characterization of a 3,6-dimethylphenanthrene-utilizing strain of Sphingomonas sp. Can J Microbiol 49:120–129 [CrossRef]
    [Google Scholar]
  39. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  40. Schmidt S., Wittich R.-M., Erdmann D., Wilkes H., Francke W., Fortnagel P. 1992; Biodegradation of diphenyl ether and its monohalogenated derivatives by Sphingomonas sp. strain SS3. Appl Environ Microbiol 58:2744–2750
    [Google Scholar]
  41. Shi T., Fredrickson J. K., Balkwill D. L. 2001; Biodegradation of polycyclic aromatic hydrocarbons by Sphingomonas strains isolated from terrestrial subsurface. J Ind Microbiol Biotechnol 26:283–289 [CrossRef]
    [Google Scholar]
  42. Sorensen S. R., Ronen Z., Aamand J. 2001; Isolation from agricultural soil of a Sphingomonas sp. able to mineralize the phenylurea herbicide isoproturon. Appl Environ Microbiol 67:5403–5409 [CrossRef]
    [Google Scholar]
  43. Stolz A., Schmidt-Maag C., Denner E. B. M., Busse H.-J., Egli T., Kämpfer P. 2000; Description of Sphingomonas xenophaga sp.nov for strains BN6T and N,N which degrade xenobiotic aromatic compounds. Int J Syst Bacteriol 50:35–41 [CrossRef]
    [Google Scholar]
  44. Story S. P., Parker S. H., Hayasaka S. S., Riley M. B., Kline E. L. 2001; Convergent and divergent points in catabolic pathways involved in utilization of fluoranthene, naphthalene, anthracene, and phenanthrene by Sphingomonas paucimobilis var. EPA505. J Ind Microbiol Biotechnol 26:369–382 [CrossRef]
    [Google Scholar]
  45. Takeuchi M., Kawai F., Shimada Y., Yokota A. 1993; Taxonomic study of polyethylene glycol-utilizing bacteria: emended description of the genus Sphingomonasand new descriptions of Sphingomonas macrogoltabidus sp.nov., Sphingomonas sanguis sp. nov. and Sphingomonas terrae sp. nov. Syst Appl Bacteriol 16:2227–2238
    [Google Scholar]
  46. Takeuchi M., Hamana K., Hiraishi A. 2001; Proposal of the genus Sphingomonas sensu strictu and three new genera,Sphingobium, Novosphingobium and Sphingopyxis, on the basis of phylogenetic and chemotaxonomic analyses. Int J Syst Evol Microbiol 51:1405–1417
    [Google Scholar]
  47. Tiirola M. A., Mannisto M. K., Puhakka J. A., Kulomaa M. S. 2002a; Isolation and characterization of Novosphingobium sp strain MT1, a dominant polychlorophenol-degrading strain in groundwater bioremediation system. Appl Environ Microbiol 68:173–180 [CrossRef]
    [Google Scholar]
  48. Tiirola M. A., Wang H., Paulin L., Kulomaa M. S. 2002b; Evidence for natural horizontal transfer of the pcpB gene in the evolution of pentachlorophenol-degrading sphingomonads. Appl Environ Microbiol 68:4495–4501 [CrossRef]
    [Google Scholar]
  49. Wattiau P., Bastiaens L., van Herwijnen R., Daal L., Parsons J. R., Renard M.-E., Springael D., Cornelis G. R. 2001; Fluorene degradation by Sphingomonas sp. LB126 proceeds through protocatechuic acid: a genetic analysis. Res Microbiol 152:861–872 [CrossRef]
    [Google Scholar]
  50. Wittich R.-M., Wilkes H., Sinnwell V., Francke W., Fortnagel P. 1992; Metabolism of dibenzo-p-dioxin bySphingomonas sp. strain RW1. Appl Environ Microbiol 58:1005–1010
    [Google Scholar]
  51. Yabuuchi E., Yano I., Oyaizu H., Hashimoto Y., Ezaki T., Yamamoto H. 1990; Proposals of Sphingomonas paucimobilis gen.nov. and comb. nov., Sphingomonas parapaucimobilis sp. nov., Sphingomonas yanoikuyae sp. nov., Sphingomonas adhaesiva sp. nov., Sphingomonas capsulata comb. nov., and two genospecies of the genus Sphingomonas. Microbiol Immunol 34:99–119 [CrossRef]
    [Google Scholar]
  52. Yabuuchi E., Yamamoto H., Terakubo S., Okamura N., Naka T., Fujiwara N., Kobayashi K., Kosako Y., Hiraishi A. 2001; Proposal of Sphingomonas wittichii sp. nov. for strain RW1T, known as a dibenzo-p-dioxin metabolizer. Int J Syst Evol Microbiol 51:281–292
    [Google Scholar]
  53. Yabuuchi E., Kosako Y., Fujiwara N., Naka T., Matsunaga I., Ogura H., Kobayashi K. 2002; Emendation of the genus Sphingomonas Yabuuchi et al., 1990 and junior objective synonymy of the species of three genera,Sphingobium, Novosphingobium and Sphingopyxis, in conjunction with Blastomonas ursincola . Int J Syst Evol Microbiol 52:1485–1496 [CrossRef]
    [Google Scholar]
  54. Zipper C., Nickel K., Angst W., Kohler H.-P. 1996; Complete microbial degradation of both enantiomers of the chiral herbicide Mecoprop [(R,S)-2-(4-chloro-2-methylphenoxy)propionic acid] in an enantioselective manner bySphingomonas herbicidovorans sp. nov. Appl Environ Microbiol 62:4318–4322
    [Google Scholar]
  55. Zylstra G. J., Kim E. 1997; Aromatic hydrocarbon degradation by Sphingomonas yanoikuyae B1. J Ind Microbiol Biotechnol 19:408–414 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.27965-0
Loading
/content/journal/micro/10.1099/mic.0.27965-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error