Identification of two lysophosphatidic acid acyltransferase genes with overlapping function in Free

Abstract

Phosphatidic acid (PA) is known to be a crucial phospholipid intermediate in cell membrane biosynthesis. In , this molecule is produced from lysophosphatidic acid (LPA) by LPA acyltransferase (EC 2.3.1.51), encoded by . possesses only one such LPA acyltransferase and a mutant is non-permissive for growth at elevated temperatures. This study describes the identification and characterization of two genes from F113 that encode enzymes with LPA acyltransferase activity. One of the genes, , was previously described, whereas is a novel gene. In addition, a putative lyso-ornithine lipid acyltransferase was also identified. All three proteins possess conserved acyltransferase domains and are homologous to PlsC and to LPA acyltransferases identified in . Functional analysis determined that both HdtS and PatB are functional LPA acyltransferases, as both complemented an mutant. Mutants lacking each of the putative acyltransferases were constructed and analysed. Growth defects were observed for and single mutants, and a double mutant could not be constructed. To determine precise roles in phospholipid synthesis, fatty acid methyl ester analysis was carried out. The mutant displayed a profile consistent with a defect in LPA acyltransferase activity, whereas no such phenotype was observed in the mutant, indicating that encodes the primary LPA acyltransferase in the cell. The presence of at least two genes specifying LPA acyltransferase activity may have implications for the function and survival of in diverse environments.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.27958-0
2005-09-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/151/9/mic1513071.html?itemId=/content/journal/micro/10.1099/mic.0.27958-0&mimeType=html&fmt=ahah

References

  1. Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J. 1990; Basic local alignment search tool. J Mol Biol 215:403–410 [CrossRef]
    [Google Scholar]
  2. Brown A. P., Brough C. L., Kroon J. T., Slabas A. R. 1995; Identification of a cDNA that encodes a 1-acyl-sn-glycerol-3-phosphate acyltransferase from Limnanthes douglasii . Plant Mol Biol 29:267–278 [CrossRef]
    [Google Scholar]
  3. Brown A. P., Carnaby S., Brough C., Brazier M., Slabas A. R. 2002; Limnanthes douglasii lysophosphatidic acid acyltransferases: immunological quantification, acyl selectivity and functional replacement of the Escherichia coli plsC gene. Biochem J 364:795–805 [CrossRef]
    [Google Scholar]
  4. Chenna R., Sugawara H., Koike T., Lopez R., Gibson T. J., Higgins D. G., Thompson J. D. 2003; Multiple sequence alignment with the clustal series of programs. Nucleic Acids Res 31:3497–3500 [CrossRef]
    [Google Scholar]
  5. Coleman J. 1990; Characterization of Escherichia coli cells deficient in 1-acyl-sn-glycerol-3-phosphate acyltransferase activity. J Biol Chem 265:17215–17221
    [Google Scholar]
  6. Cronan J. E., Rock C. O. others 1987; Biosynthesis of membrane lipids. In Escherichia coli and Salmonella typhimuriumCellular and Molecular Biology pp 474–497 Edited by Neidhardt F. C. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  7. Cronan J. J. E., Rock C. O. others 1996; Biosynthesis of membrane lipids. In Escherichia coli and Salmonella typhimurium: Cellular and Molecular Biology , 2nd edn. pp 612–636 Edited by Neidhardt F. C. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  8. de Rudder K. E., Lopez-Lara I. M., Geiger O. 2000; Inactivation of the gene for phospholipid N-methyltransferase in Sinorhizobium meliloti : phosphatidylcholine is required for normal growth. Mol Microbiol 37:763–772 [CrossRef]
    [Google Scholar]
  9. DiRusso C. C., Black P. N., Weimar J. D. 1999; Molecular inroads into the regulation and metabolism of fatty acids, lessons from bacteria. Prog Lipid Res 38:129–197 [CrossRef]
    [Google Scholar]
  10. Fenton A. M., Stephens P. M., Crowley J., O'Callaghan M., O'Gara F. 1992; Exploitation of gene(s) involved in 2,4-diacetylphloroglucinol biosynthesis to confer a new biocontrol capability to a Pseudomonas strain. Appl Environ Microbiol 58:3873–3878
    [Google Scholar]
  11. Figurski D. H., Helinski D. R. 1979; Replication of an origin-containing derivative of plasmid RK2 dependent on a plasmid function provided in trans . Proc Natl Acad Sci U S A 76:1648–1652 [CrossRef]
    [Google Scholar]
  12. Gao J. L., Weissenmayer B., Taylor A. M., Thomas-Oates J., Lopez-Lara I. M., Geiger O. 2004; Identification of a gene required for the formation of lyso-ornithine lipid, an intermediate in the biosynthesis of ornithine-containing lipids. Mol Microbiol 53:1757–1770 [CrossRef]
    [Google Scholar]
  13. Kovach M. E., Phillips R. W., Elzer P. H., Roop R. M. 2nd, Peterson K. M. 1994; pbbr1mcs: a broad-host-range cloning vector. Biotechniques 16:800–802
    [Google Scholar]
  14. Larson T. J., Lightner V. A., Green P. R., Modrich P., Bell R. M. 1980; Membrane phospholipid synthesis in Escherichia coli . Identification of the sn-glycerol-3-phosphate acyltransferase polypeptide as the plsB gene product. J Biol Chem 255:9421–9426
    [Google Scholar]
  15. Laue B. E., Jiang Y., Chhabra S. R., Jacob S., Stewart G. S., Hardman A., Downie J. A., O'Gara F., Williams P. 2000; The biocontrol strain Pseudomonas fluorescens F113 produces the Rhizobium small bacteriocin, N-(3-hydroxy-7-cis-tetradecenoyl)homoserine lactone, via HdtS, a putative novel N-acylhomoserine lactone synthase. Microbiology 146:2469–2480
    [Google Scholar]
  16. Lightner V. A., Bell R. M., Modrich P. 1983; The DNA sequences encoding plsB and dgk loci of Escherichia coli . J Biol Chem 258:10856–10861
    [Google Scholar]
  17. Lopez-Lara I. M., Sohlenkamp C., Geiger O. 2003; Membrane lipids in plant-associated bacteria: their biosyntheses and possible functions. Mol Plant Microbe Interact 16:567–579 [CrossRef]
    [Google Scholar]
  18. Los D. A., Murata N. 2004; Membrane fluidity and its roles in the perception of environmental signals. Biochim Biophys Acta 1666142–157 [CrossRef]
    [Google Scholar]
  19. Lugtenberg B. J., Chin A. W. T. F., Bloemberg G. V. 2002; Microbe-plant interactions: principles and mechanisms. Antonie Van Leeuwenhoek 81:373–383 [CrossRef]
    [Google Scholar]
  20. Minder A. C., de Rudder K. E., Narberhaus F., Fischer H. M., Hennecke H., Geiger O. 2001; Phosphatidylcholine levels in Bradyrhizobium japonicum membranes are critical for an efficient symbiosis with the soybean host plant. Mol Microbiol 39:1186–1198 [CrossRef]
    [Google Scholar]
  21. Morrissey J. P., Walsh U. F., O'Donnell A., Moenne-Loccoz Y., O'Gara F. 2002; Exploitation of genetically modified inoculants for industrial ecology applications. Antonie Van Leeuwenhoek 81:599–606 [CrossRef]
    [Google Scholar]
  22. Nagiec M. M., Wells G. B., Lester R. L., Dickson R. C. 1993; A suppressor gene that enables Saccharomyces cerevisiae to grow without making sphingolipids encodes a protein that resembles an Escherichia coli fatty acyltransferase. J Biol Chem 268:22156–22163
    [Google Scholar]
  23. Pearson W. R., Lipman D. J. 1988; Improved tools for biological sequence comparison. Proc Natl Acad Sci U S A 85:2444–2448 [CrossRef]
    [Google Scholar]
  24. Philipp W. J., Nair S., Guglielmi G., Lagranderie M., Gicquel B., Cole S. T. 1996; Physical mapping of Mycobacterium bovis BCG pasteur reveals differences from the genome map of Mycobacterium tuberculosis H37Rv and from M. bovis . Microbiology 142:3135–3145 [CrossRef]
    [Google Scholar]
  25. Rock C. O., Cronan J. E. Jr 1981; Acyl carrier protein from Escherichia coli . Methods Enzymol 71 Pt C:341–351
    [Google Scholar]
  26. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning: a Laboratory Manual , 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  27. Schafer A., Tauch A., Jager W., Kalinowski J., Thierbach G., Puhler A. 1994; Small mobilizable multi-purpose cloning vectors derived from the Escherichia coli plasmids pK18 and pK19: selection of defined deletions in the chromosome of Corynebacterium glutamicum . Gene 145:69–73 [CrossRef]
    [Google Scholar]
  28. Scher F. M., Baker R. 1982; Effects of Pseudomonas putida and a synthetic iron chelator on induction of soil suppressiveness to Fusarium wilt pathogens. Phytopathology 72:1567–1573 [CrossRef]
    [Google Scholar]
  29. Shanahan P., O'Sullivan D. J., Simpson P., Glennon G., O'Gara F. 1992; Isolation of 2,4-diacetylphloroglucinol from a fluorescent pseudomonad and investigation of physiological parameters affecting its production. Appl Environ Microbiol 58:353–358
    [Google Scholar]
  30. Shih G. C., Kahler C. M., Swartley J. S., Rahman M. M., Coleman J., Carlson R. W., Stephens D. S. 1999; Multiple lysophosphatidic acid acyltransferases in Neisseria meningitidis . Mol Microbiol 32:942–952 [CrossRef]
    [Google Scholar]
  31. Sohlenkamp C., Lopez-Lara I. M., Geiger O. 2003; Biosynthesis of phosphatidylcholine in bacteria. Prog Lipid Res 42:115–162 [CrossRef]
    [Google Scholar]
  32. Swartley J. S., Stephens D. S. 1995; Co-transcription of a homologue of the formamidopyrimidine-DNA glycosylase ( fpg ) and lysophosphatidic acid acyltransferase ( nlaA ) in Neisseria meningitidis . FEMS Microbiol Lett 134:171–176
    [Google Scholar]
  33. Swartley J. S., Balthazar J. T., Coleman J., Shafer W. M., Stephens D. S. 1995; Membrane glycerophospholipid biosynthesis in Neisseria meningitidis and Neisseria gonorrhoeae : identification, characterization, and mutagenesis of a lysophosphatidic acid acyltransferase. Mol Microbiol 18:401–412 [CrossRef]
    [Google Scholar]
  34. Van Haute E., Joos H., Maes M., Warren G., Van Montagu M., Schell J. 1983; Intergeneric transfer and exchange recombination of restriction fragments cloned in pBR322: a novel strategy for the reversed genetics of the Ti plasmids of Agrobacterium tumefaciens . EMBO J 2:411–417
    [Google Scholar]
  35. Walsh U. F., Morrissey J. P., O'Gara F. 2001; Pseudomonas for biocontrol of phytopathogens: from functional genomics to commercial exploitation. Curr Opin Biotechnol 12:289–295 [CrossRef]
    [Google Scholar]
  36. Weissenmayer B., Gao J. L., Lopez-Lara I. M., Geiger O. 2002; Identification of a gene required for the biosynthesis of ornithine-derived lipids. Mol Microbiol 45:721–733 [CrossRef]
    [Google Scholar]
  37. West J., Tompkins C. K., Balantac N. & 8 other authors; 1997; Cloning and expression of two human lysophosphatidic acid acyltransferase cDNAs that enhance cytokine-induced signaling responses in cells. DNA Cell Biol 16:691–701
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.27958-0
Loading
/content/journal/micro/10.1099/mic.0.27958-0
Loading

Data & Media loading...

Most cited Most Cited RSS feed