1887

Abstract

Phosphatidic acid (PA) is known to be a crucial phospholipid intermediate in cell membrane biosynthesis. In , this molecule is produced from lysophosphatidic acid (LPA) by LPA acyltransferase (EC 2.3.1.51), encoded by . possesses only one such LPA acyltransferase and a mutant is non-permissive for growth at elevated temperatures. This study describes the identification and characterization of two genes from F113 that encode enzymes with LPA acyltransferase activity. One of the genes, , was previously described, whereas is a novel gene. In addition, a putative lyso-ornithine lipid acyltransferase was also identified. All three proteins possess conserved acyltransferase domains and are homologous to PlsC and to LPA acyltransferases identified in . Functional analysis determined that both HdtS and PatB are functional LPA acyltransferases, as both complemented an mutant. Mutants lacking each of the putative acyltransferases were constructed and analysed. Growth defects were observed for and single mutants, and a double mutant could not be constructed. To determine precise roles in phospholipid synthesis, fatty acid methyl ester analysis was carried out. The mutant displayed a profile consistent with a defect in LPA acyltransferase activity, whereas no such phenotype was observed in the mutant, indicating that encodes the primary LPA acyltransferase in the cell. The presence of at least two genes specifying LPA acyltransferase activity may have implications for the function and survival of in diverse environments.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.27958-0
2005-09-01
2020-04-07
Loading full text...

Full text loading...

/deliver/fulltext/micro/151/9/mic1513071.html?itemId=/content/journal/micro/10.1099/mic.0.27958-0&mimeType=html&fmt=ahah

References

  1. Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J. 1990; Basic local alignment search tool. J Mol Biol215:403–410[CrossRef]
    [Google Scholar]
  2. Brown A. P., Brough C. L., Kroon J. T., Slabas A. R. 1995; Identification of a cDNA that encodes a 1-acyl-sn-glycerol-3-phosphate acyltransferase from Limnanthes douglasii . Plant Mol Biol29:267–278[CrossRef]
    [Google Scholar]
  3. Brown A. P., Carnaby S., Brough C., Brazier M., Slabas A. R. 2002; Limnanthes douglasii lysophosphatidic acid acyltransferases: immunological quantification, acyl selectivity and functional replacement of the Escherichia coli plsC gene. Biochem J364:795–805[CrossRef]
    [Google Scholar]
  4. Chenna R., Sugawara H., Koike T., Lopez R., Gibson T. J., Higgins D. G., Thompson J. D. 2003; Multiple sequence alignment with the clustal series of programs. Nucleic Acids Res31:3497–3500[CrossRef]
    [Google Scholar]
  5. Coleman J. 1990; Characterization of Escherichia coli cells deficient in 1-acyl-sn-glycerol-3-phosphate acyltransferase activity. J Biol Chem265:17215–17221
    [Google Scholar]
  6. Cronan J. E., Rock C. O. others 1987; Biosynthesis of membrane lipids. In Escherichia coli and Salmonella typhimuriumCellular and Molecular Biology pp474–497 Edited by Neidhardt F. C.. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  7. Cronan J. J. E., Rock C. O. others 1996; Biosynthesis of membrane lipids. In Escherichia coli and Salmonella typhimurium: Cellular and Molecular Biology , 2nd edn. pp612–636 Edited by Neidhardt F. C.. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  8. de Rudder K. E., Lopez-Lara I. M., Geiger O. 2000; Inactivation of the gene for phospholipid N-methyltransferase in Sinorhizobium meliloti : phosphatidylcholine is required for normal growth. Mol Microbiol37:763–772[CrossRef]
    [Google Scholar]
  9. DiRusso C. C., Black P. N., Weimar J. D. 1999; Molecular inroads into the regulation and metabolism of fatty acids, lessons from bacteria. Prog Lipid Res38:129–197[CrossRef]
    [Google Scholar]
  10. Fenton A. M., Stephens P. M., Crowley J., O'Callaghan M., O'Gara F. 1992; Exploitation of gene(s) involved in 2,4-diacetylphloroglucinol biosynthesis to confer a new biocontrol capability to a Pseudomonas strain. Appl Environ Microbiol58:3873–3878
    [Google Scholar]
  11. Figurski D. H., Helinski D. R. 1979; Replication of an origin-containing derivative of plasmid RK2 dependent on a plasmid function provided in trans . Proc Natl Acad Sci U S A76:1648–1652[CrossRef]
    [Google Scholar]
  12. Gao J. L., Weissenmayer B., Taylor A. M., Thomas-Oates J., Lopez-Lara I. M., Geiger O. 2004; Identification of a gene required for the formation of lyso-ornithine lipid, an intermediate in the biosynthesis of ornithine-containing lipids. Mol Microbiol53:1757–1770[CrossRef]
    [Google Scholar]
  13. Kovach M. E., Phillips R. W., Elzer P. H., Roop R. M. 2nd, Peterson K. M. 1994; pbbr1mcs: a broad-host-range cloning vector. Biotechniques16:800–802
    [Google Scholar]
  14. Larson T. J., Lightner V. A., Green P. R., Modrich P., Bell R. M. 1980; Membrane phospholipid synthesis in Escherichia coli . Identification of the sn-glycerol-3-phosphate acyltransferase polypeptide as the plsB gene product. J Biol Chem255:9421–9426
    [Google Scholar]
  15. Laue B. E., Jiang Y., Chhabra S. R., Jacob S., Stewart G. S., Hardman A., Downie J. A., O'Gara F., Williams P. 2000; The biocontrol strain Pseudomonas fluorescens F113 produces the Rhizobium small bacteriocin, N-(3-hydroxy-7-cis-tetradecenoyl)homoserine lactone, via HdtS, a putative novel N-acylhomoserine lactone synthase. Microbiology146:2469–2480
    [Google Scholar]
  16. Lightner V. A., Bell R. M., Modrich P. 1983; The DNA sequences encoding plsB and dgk loci of Escherichia coli . J Biol Chem258:10856–10861
    [Google Scholar]
  17. Lopez-Lara I. M., Sohlenkamp C., Geiger O. 2003; Membrane lipids in plant-associated bacteria: their biosyntheses and possible functions. Mol Plant Microbe Interact16:567–579[CrossRef]
    [Google Scholar]
  18. Los D. A., Murata N. 2004; Membrane fluidity and its roles in the perception of environmental signals. Biochim Biophys Acta 1666;142–157[CrossRef]
    [Google Scholar]
  19. Lugtenberg B. J., Chin A. W. T. F., Bloemberg G. V. 2002; Microbe-plant interactions: principles and mechanisms. Antonie Van Leeuwenhoek81:373–383[CrossRef]
    [Google Scholar]
  20. Minder A. C., de Rudder K. E., Narberhaus F., Fischer H. M., Hennecke H., Geiger O. 2001; Phosphatidylcholine levels in Bradyrhizobium japonicum membranes are critical for an efficient symbiosis with the soybean host plant. Mol Microbiol39:1186–1198[CrossRef]
    [Google Scholar]
  21. Morrissey J. P., Walsh U. F., O'Donnell A., Moenne-Loccoz Y., O'Gara F. 2002; Exploitation of genetically modified inoculants for industrial ecology applications. Antonie Van Leeuwenhoek81:599–606[CrossRef]
    [Google Scholar]
  22. Nagiec M. M., Wells G. B., Lester R. L., Dickson R. C. 1993; A suppressor gene that enables Saccharomyces cerevisiae to grow without making sphingolipids encodes a protein that resembles an Escherichia coli fatty acyltransferase. J Biol Chem268:22156–22163
    [Google Scholar]
  23. Pearson W. R., Lipman D. J. 1988; Improved tools for biological sequence comparison. Proc Natl Acad Sci U S A85:2444–2448[CrossRef]
    [Google Scholar]
  24. Philipp W. J., Nair S., Guglielmi G., Lagranderie M., Gicquel B., Cole S. T. 1996; Physical mapping of Mycobacterium bovis BCG pasteur reveals differences from the genome map of Mycobacterium tuberculosis H37Rv and from M. bovis . Microbiology142:3135–3145[CrossRef]
    [Google Scholar]
  25. Rock C. O., Cronan J. E. Jr. 1981; Acyl carrier protein from Escherichia coli . Methods Enzymol71 Pt C:341–351
    [Google Scholar]
  26. Sambrook J., Fritsch E. F., Maniatis T. 1989; Molecular Cloning: a Laboratory Manual , 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  27. Schafer A., Tauch A., Jager W., Kalinowski J., Thierbach G., Puhler A. 1994; Small mobilizable multi-purpose cloning vectors derived from the Escherichia coli plasmids pK18 and pK19: selection of defined deletions in the chromosome of Corynebacterium glutamicum . Gene145:69–73[CrossRef]
    [Google Scholar]
  28. Scher F. M., Baker R. 1982; Effects of Pseudomonas putida and a synthetic iron chelator on induction of soil suppressiveness to Fusarium wilt pathogens. Phytopathology72:1567–1573[CrossRef]
    [Google Scholar]
  29. Shanahan P., O'Sullivan D. J., Simpson P., Glennon G., O'Gara F. 1992; Isolation of 2,4-diacetylphloroglucinol from a fluorescent pseudomonad and investigation of physiological parameters affecting its production. Appl Environ Microbiol58:353–358
    [Google Scholar]
  30. Shih G. C., Kahler C. M., Swartley J. S., Rahman M. M., Coleman J., Carlson R. W., Stephens D. S. 1999; Multiple lysophosphatidic acid acyltransferases in Neisseria meningitidis . Mol Microbiol32:942–952[CrossRef]
    [Google Scholar]
  31. Sohlenkamp C., Lopez-Lara I. M., Geiger O. 2003; Biosynthesis of phosphatidylcholine in bacteria. Prog Lipid Res42:115–162[CrossRef]
    [Google Scholar]
  32. Swartley J. S., Stephens D. S. 1995; Co-transcription of a homologue of the formamidopyrimidine-DNA glycosylase ( fpg ) and lysophosphatidic acid acyltransferase ( nlaA ) in Neisseria meningitidis . FEMS Microbiol Lett134:171–176
    [Google Scholar]
  33. Swartley J. S., Balthazar J. T., Coleman J., Shafer W. M., Stephens D. S. 1995; Membrane glycerophospholipid biosynthesis in Neisseria meningitidis and Neisseria gonorrhoeae : identification, characterization, and mutagenesis of a lysophosphatidic acid acyltransferase. Mol Microbiol18:401–412[CrossRef]
    [Google Scholar]
  34. Van Haute E., Joos H., Maes M., Warren G., Van Montagu M., Schell J. 1983; Intergeneric transfer and exchange recombination of restriction fragments cloned in pBR322: a novel strategy for the reversed genetics of the Ti plasmids of Agrobacterium tumefaciens . EMBO J2:411–417
    [Google Scholar]
  35. Walsh U. F., Morrissey J. P., O'Gara F. 2001; Pseudomonas for biocontrol of phytopathogens: from functional genomics to commercial exploitation. Curr Opin Biotechnol12:289–295[CrossRef]
    [Google Scholar]
  36. Weissenmayer B., Gao J. L., Lopez-Lara I. M., Geiger O. 2002; Identification of a gene required for the biosynthesis of ornithine-derived lipids. Mol Microbiol45:721–733[CrossRef]
    [Google Scholar]
  37. West J., Tompkins C. K., Balantac N. & 8 other authors. 1997; Cloning and expression of two human lysophosphatidic acid acyltransferase cDNAs that enhance cytokine-induced signaling responses in cells. DNA Cell Biol16:691–701
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.27958-0
Loading
/content/journal/micro/10.1099/mic.0.27958-0
Loading

Data & Media loading...

Most cited this month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error